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4) Introduction

We have been developing CAD algorithms in detection of microcalcifications and masses using
advanced image processing and computer vision techniques. Our CAD algorithms have provided very
promising results in laboratory tests. Our goals in this proposal are to implement our CAD algorithms in
a fast workstation, develop user interfaces for efficient operation of the CAD programs, and conduct a
pilot clinical trial of the CAD schemes at two mammographic screening sites. Based on the results of
the pilot clinical trial, we can evaluate the sensitivity and specificity of the CAD algorithms, analyze the
effects of the CAD schemes on mammographic screening, identify any potential problems in a clinical
environment, and develop methods to further improve the CAD schemes in the future. We believe that
this is a crucial step to develop a clinically practical CAD workstation.

It has been recognized that digital mammography is one of the key research areas for
improvement in the diagnosis of breast cancer [1]. Two of the major issues in digital mammography are
the technological requirements in developing high resolution digital detectors and the transmission and
archiving the large amount of data. Data compression can reduce the amount of data for transmission
and storage. However, there is often a tradeoff between compression ratio and image fidelity. Data
compression in mammography is especially difficult because of the very subtle image details such as
microcalcifications and mass margins that need to be preserved. We have investigated the effects of data
compression on computerized detection of microcalcifications previously. In this project, we have
developed a CAD guided data compression technique to maximize the compression efficiency with a
minimum loss of information. Our approach is to preserve the original image information by lossless
compression in potentially important regions on the mammograms indicated by the CAD programs. For
breast areas outside these regions, we will apply the most efficient lossy compression technique that
does not cause noticeable degradation of image details. We will conduct subjective image quality
ranking studies to compare observer performance on the uncompressed images, on images compressed
with the selected lossy technique, and on images compressed with the standard JPEG technique.

With the support of this grant from the USAMRMC Breast Cancer Research Program, we have
developed a CAD workstation with a proper graphical user interface for a pilot clinical trial. CAD
workstations have been implemented at the University of Michigan and at the Georgetown University.
In this no-cost-time-extension year, our main goal is to continue to collect cases for the pilot clinical
study, and to conduct the observer performance study for comparing compressed and non-compressed
mammograms. We will discuss the details of these progresses in the following section.




(5) Body

During the non-cost-time-extension period of 9/23/99 to 9/22/00, our first goal is to conduct the
pilot study to collect patient cases in a screening setting. The images will be read by radiologists
without and with CAD using the CAD workstations at the University of Michigan and the Georgetown
University. Our second goal is to conduct the observer performance to compare compressed and
uncompressed mammograms. We have conducted the following tasks:

University of Michigan

(a) CADView workstation

In the previous reports, we have discussed the basic design and operation of our PC-based CAD
workstation, "CADView", and its graphical user interface (GUI) in detail. After we conducted training
reading sessions with radiologists, we have made further improvement in the GUI, the display, and the
data collection system in this year. The current version of the CADView system being used in the pilot
clinical study is shown in Figure 1. The reading process is as follows. The radiologist will read the
original film mammograms on the alternator as in their daily clinical practice. They will then retrieve
the patient 4-view mammogram to be displayed on the CADView monitor by scanning the barcode of
the patient folder. They will mark any potential masses on the displayed images and record their
impression of the most suspicious mass using the BI-RADS lexicon. They also select the BI-RADS
action category for the mass which is recorded by the CAD system. Any potential microcalcification
Jocations will then be marked and the BI-RADS impression and action category for the
microcalcifications are recorded. The computer then displays the detected suspicious masses on the
images. The radiologist will read the original films again based on the computer prompts. The
radiologist can change their initial markings of masses on the displayed images if they are influenced by
the computer output. They can also change the BI-RADS impression and the action category for the
mass. The same procedure will also be performed for microcalcifications. The markings and action
categories of the radiologist before and after CAD display are both recorded in a database file.

Figure 2 illustrates an example of the radiologist’s markings on the displayed images. The
double circles marked the location of the most suspicious mass in Figure 2(a) and the location of the
most suspicious microcalcification clusters in Figure 2(b). The sliders on the right indicated the BI-
RADS impression of the marked lesions. The right and left breasts were recorded separately. The BI-
RADS action categories for the lesions were also selected on the sliders.

Figure 3 illustrates the same example after the CADView displayed the computer detection
output. The computer detected masses were marked by arrowheads and the computer detected clusters
were marked by dots. The radiologist’s original marks were superimposed on the computer output. If
there were disagreements, the radiologist could double-check the film mammograms on the alternator to
resolve the discrepancy. If the radiologist found additional suspicious locations, he/she would add new
marks on the displayed images. If the new locations were deemed more suspicious than the ones that
he/she marked before the computer output was displayed, they could move the double circles to the new
locations. The radiologist could also change their BI-RADS impression and action categories on the
lesions by moving the pointers on the sliders.

Figure 4 shows the clinical setting of the CADView system. The display is placed next to the
offline alternator and the radiologist can easily access the keyboard and mouse. Patient retrieval is
through a barcode reader. All other input is through "point and click" by using the mouse. The
mammograms displayed on the screen are arranged in exactly the same way as the films mounted on the
alternator to facilitate the radiologist to compare the corresponding locations marked on the images.
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Figure 4. The setup for the CAD reading of off-line screening mammograms. The radiologist reads the
original film mammmograms on the alternator while using the computer output as a second
opinion.

(b)  Collection of screening mammograms

To date, we have collected over 1000 cases at a University of Michigan (UM) breast imaging off-
line screening site, and over 400 cases from the Georgetown University (GU) Breast Imaging clinic. At
the University of Michigan, the off-line screening cases are transported to the central site at the Breast
Imaging Division at the Department of Radiology the next day early in the morning. The films are
digitized and processed on the same day. The computer output is ready to be used in the CADView
workstation when the screening cases are read the next day. The radiologist will read the cases on the
off-line alternator, together with all other screening cases. The radiologists' assessment scores are
recorded in the CADView system.

We have analyzed the first 850 cases. We do not have the callback results and follow up
information on the other cases yet because of the time delay between a decision to call back and the
scheduled call back exam. The number of callbacks, biopsies, and follow-up cases within the first 850
participating patients at the UM are summarized in Table I.

9




Because the number of callbacks within the patient cohort is still small, we have not performed

statistical analysis of the data. From these initial results, we can make some observations:

1.

b

e

For the cases that the radiologists recommended biopsy, the computer program detected 100%
(12/12) of the lesions.

For the cases that radiologists recommended fine needle biopsy, the computer program detected 75%
(3/4) of the lesions.

The computer detected both malignant cases (2/2) found in this patient group.

The computer caused 19 additional call backs, of which 6 were recommended 6 month follow-up
and 1 was recommended biopsy, indicating that the computer found some areas of concern that the
radiologists would not have called without the computer output. The development of the 6-month
follow-up cases will be followed.

The computer caused 1 additional biopsy that was found to be benign.

The computer has a detection sensitivity of 71% for masses and 81% for microcalcifications, similar
to our prediction in laboratory tests.

The computer missed 1 case that was recommended for fine needle biopsy and found to be benign,
and 8 microcalcification or mass cases, that were recommended for 6 month follow up. These 6-
month follow-up cases will again be followed.

10




Table I The performance of the CADView detection system and its effects on radiologists’ reading on
the callback cases from the first 850 off-line screening cases at the University of Michigan.
The 12 month follow up indicates a regular annual screening schedule and these cases are thus
generally considered to be normal.

Biopsy Fine needle 6 month 12 month Overall Malignancy
aspiration  follow up follow up

Call Backs for Mass

Radiologist detection 6 3 20 79 108 1
Computer detection 6 2 14 55 77 1
Sensitivity of computer (%) 100% 67% 70% 70% 71% 100%
Call Backs for Calcs .
Radiologist detection 4 7 5 16 0
Computer detection 4 6 3 13 0
Sensitivity of computer (%) 100% 86% 60% 81%
Call Backs for Mass and Calcs
Radiologist detection 2 1 5 5 13 1
Computer detection 2 1 4 5 12 1
Sensitivity of computer (%) 100% 100% 80% 100% 92% 100%
Overall Call Backs
Radiologist detection 12 4 32 89 137 2
Computer detection 12 3 24 63 102 2
Sensitivity of computer (%) 100% 75% 75% 71% 75% 100%
Call Backs caused by CAD
Mass 1 2 13 16
Microcalcifications 2 1 3

Computer False Negatives

FN for Calcs 1 2 3 0
FN for Mass 1 6 24 31 0
FN for Mass and Calcs 1 1 0
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Georgetown University

Annual Report (9/23/99 — 9/22/00) to USAMRMC through University of Michigan
(a) Continuation of Computer-Aided Detection clinical trial at Georgetown University

Since January 2000, Drs. Freedman and Makariou have used the system to perform a part of their
routine clinical readings. We placed a Lumisys film digitizer (Model Lumiscan 150) hosted by a SUN
SPARC 10 workstation at the Breast Imaging Division, Radiology Department, Georgetown University
Medical Center. A part-time student was hired to enter the patient demographic data and to digitize the
films about 2-3 times a week. Since the mammography film loading is completed at 4:30 pm in the
afternoon, the student can only work off hour from 5 pm to 9 pm. Usually the student is able to digitize
about 20 cases (80 mammograms) for each working session. The data flow is chained through a 3-step

procedure.

Step 1: A mammogram is digitized at the SUN/Lumiscan workstation. Patient information, including
ID, age, side, view (CC or MLO) and examination date, is recorded during the digitization and
entered into CAD patient/film database (part of the CADView system) on the PC computer.
Each mammogram is digitized at 100 micron resolution. The image files are stored at a
designated directory at the SUN workstation hard disk. The image files are also transferred for
further processing to the XP1000 workstation at the ISIS Center via a high-speed Ethernet

connection.

Step 2: A control program running on the XP1000 workstation continuously searches for new images
being transferred from the SUN/Lumiscan workstation. When a new image appears, this control
program initiates the execution of the program to detect the mass and clustered
microcalcifications on that image and stores the detection results in appropriate directories.

Step 3: On the PC workstation, the CADView program, designed and implemented by the University of
Michigan team, is used as the user interface to review and analyze the results of the mass and
microcalcification detection. The CADView program uses an automated procedure to download
the output images from the XP1000 workstation on an on-demand basis. The radiologist uses the
patient ID number to retrieve patient information from the database (updated in step 2), including
the CAD output information on the images to be displayed, and display them on the screen. If the
requested images are not available locally, the program establishes an FTP session with the
XP1000 workstation and downloads those image files to its working directory on the PC
workstation. The radiologist can then perform the clinical evaluation of the patient films. The
program, among others, allows the radiologist to mark the location of any suspicious masses
and/or microcalcifications on the images, along with his/her action rating. The results of the
radiologist’s review and evaluation are stored in the database.

(b) Summary of the cases collected at Georgetown University Medical Center

In the past nine months, 1189 cases (4756 images) were digitized and processed by the CAD
system. However, only about 40 percent of the cases were reviewed in conjunction with the clinical
reading by the radiologists due to some operation issues and mismatch of scheduling. The subcategories
of the collected cases are given below.

12




We have analyzed the first 442 cases from the Georgetown University. The results are analyzed

in terms of the callback and follow up decisions, as summarized in Table II. The pathology of some of
the biopsy cases is still being tracked. So far only three cases have been identified as malignant. From
these initial results, we can make some observations:

1.

2.

For the cases that the radiologists recommended biopsy, the computer program detected 100% (6/6)
of the lesions.

For the cases that radiologists recommended fine needle biopsy, the computer program detected
100% (5/5) of the lesions.

The computer detected all three malignant cases (3/3) found in this patient group. Two were mass
cases and one was microcalcification case.

The computer caused 2 additional call backs, of which 1 was recommended biopsy and found to be
malignant.

The computer has a detection sensitivity of 75% for masses and 80% for microcalcifications, similar
to our prediction in laboratory tests and also similar to the detection sensitivity found at the
University of Michigan site. These results confirm that the performance of the CAD system is
consistent in the patient population, although the two sites use different digitizers and different
mammography systems.

The computer missed 4 cases that were recommended for 3 or 6 month short-term follow up. The
development of these follow-up cases will be followed.
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Table I1. The performance of the CADView detection system and its effects on radiologists’ reading on
the callback cases from the first 442 off-line screening cases at the Georgetown University. The
12 month follow up indicates a regular annual screening schedule and these cases are thus

generally considered to be normal.

Biopsy Fine needle 3-6 month 12 month Overall Malignancy
aspiration  follow up follow up
Call Backs for Mass
| Radiologist detection 3 5 5 42 55 2
| Computer detection 3 5 3 30 41 2
| Sensitivity of computer (%) 100% 100% 60% 71% 75%
| Call Backs for Calcs
Radiologist detection 3 7 10 20 0
Computer detection 3 5 8 16 1
Sensitivity of computer (%) 100% 71% 80% 80%
Call Backs for Mass and Calcs
Radiologist detection 2 4 6
Computer detection 2 3 5
Sensitivity of computer (%) 100% 75% 83%
Overall Call Backs
Radiologist detection 6 5 14 56 81 2
Computer detection 6 5 10 41 62 3
Sensitivity of computer (%) 100% 100% 71% 73% 77%
Call Backs caused by CAD
Mass 1 1
Microcalcifications 1 1 1
Computer False Negatives
FN for Calcs 2 2 4
FN for Mass 2 12 14
FN for Mass and Calcs 1 1
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(¢) Image compression of mammograms using a CAD-guided wavelet compression method

Currently, it is possible to obtain a digital mammogram having high spatial resolution by
digitizing screen-film images with a laser digitizer [2-4] or a direct digital systems [5,6]. The research
and development of teleradiology and telemammography systems have progressed through many
technical and clinical endeavors [7-9]. However, the clinical utilization of teleradiology systems is still
not known with regards to workloads, reliability, and clinical protocols. The selection of efficient and
cost-effective wide-area networks for various applications is presently more an art than a science. In this
area, two technical problems remain: (a) no model exists by which radiologists can apply the experience
of others to design and implement a teleradiology system; (b) teleradiology systems have not been
studied for use in research and education.

(c.1) CAD-guided compression scheme for digital mammography

We randomly selected 100 mammograms from our clinical database. Each of these
mammograms contain isolated and/or clustered microcalcifications. The mammograms were digitized
by a Lumisys (LumiScan Model 150) at 100 microns pixel size that generates a computer file of
1792x2560x 16 bits. However, only 12 out of 16 bits were used to store the digital data for each pixel.

Prior to performing the wavelet transform, the boundary of the mammogram was delineated.
Only the area within the boundary was compressed. We used an integer wavelet transform [10,11] to
decompose the mammogram followed by a linear quantization process and arithmetic coding to encode
the quantized wavelet coefficients. In order to preserve the data accuracy of calcifications and suspected
calcifications, we employed our computer-aided detection procedure that can detect excessive number of
small bright spots on the mammogram. All the suspected calcifications and their adjacent areas were
then losslessly encoded. The major reason to apply lossless coding on all suspected calcifications is
two-fold: (1) to preserve the original quality of calcifications which are clinically significant features
associated with breast cancer, and (2) to maintain the original quality of calcification-like spots that may
otherwise become false-positives due to the blurry effect of the compression. Figure 5 illustrates the
compression scheme used in this study.

We decomposed each image with S-level wavelet transform; hence, the matrix size of the
smallest image was 112x160 pixels. The lowest resolution subimage was further decomposed by an
error-free compression method (i.e., A DPCM followed by an arithmetic coding). The bit-allocation and
quantization were determined based on the energy concentration in each level of the high frequency
domains. Beside the quantization, all data processing procedures are reversible.

The decompression was done by inverse arithmetic coding to resume the quantized coefficients
on the wavelet domain followed by an inverse wavelet transform. The inverse transformed image is a
compressed version of the mammogram that possesses small variances on the majority of the pixels.
The compressed data on the B file was processed by another inverse arithmetic coding process. The
reconstructed data was added onto the pixel values of the suspected areas.

15
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(c.2) Description of observer performance studies

We asked a senior breast radiologist to view a hundred sets of images with four different
compression modes and to rate their impressions of their comparative quality. Each set of images is a
pair of original and one of three compression modes. The three compression modes are: (i) 0.3 bit/pixel
date wavelet encoded in compressed file A with the residual data for lossless compression of suspected
calcifications in file B, (ii) 0.1 bit/pixel wavelet encoded in compressed in file A with the residual data
for lossless compression of suspected calcifications in file B, and (iii) 0.1 bit/pixel data wavelet encoded
in file A only.

Each set of decompressed and original images were randomly displayed on two SUN computer
monitors (right or left) as a pair. The effective image size was approximately magnified by a factor of 4
(i.e., 2x2). Contrast and brightness controls were available as software functions for the radiologist to
adjust the viewing parameters when necessary. A synchronized display software was developed for the
comparative visual study. The software allows the user to simultaneously display and control image
functions on the paired images using a single or two monitors. The reader was asked to rate image
quality in terms of calcification observability, edge sharpness, overall image quality and to rate noise
appearance for all images. A four-section questionnaire was used and is shown in Figure 6.

Letters “L” and “R” indicate that the left or right sides rank higher on the dimension measured,
respectively. A non-zero score indicates that one side of the image has either slightly (for L1 or R1), or
moderately (for L2 or R2), or significantly (for L3 or R3) better quality or more noise than the other side.
A score of “0” indicates that the pair of images has identical image quality or noise appearance. If there
is some noticeable difference between images that are scored “0” on the measured dimension, this is
indicated by checking the bottom box below the “0” score. If reader is in favor of one image for its
specific feature, one of the two boxes (left and right) can be checked to indicate his/her preference.
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Figure 6: A questionnaire for qualitative measures for a pair of images.
(c.3) Observer experiments and results
(1). The First Observer Study
The modified CAD program detected an average of 1,193 potential microcalcifications in CC
view mammograms and an average of 948 potential microcalcifications in MLO view mammograms,

respectively. Figures 7 and 8 show two sample mammograms, their compressed counterparts, and the
subtracted 1mages.
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| Figure 7: (Av)' A C nibzbi'emr“namfﬁograni,m(B) ité complessed image at 0.4 bit/pixel, and (C) the enhanced
| subtracted image resulting from (A)-(B). The uniform squares in (C) result form the lossless
compression at the CAD detected areas.

Figure 8: (A) A MLO view mamniogram, ) its ompressed image at 0.41 bt/piel,ad (C) the
enhanced subtracted image resulting from (A)-(B). The uniform squares in (C) result form the
lossless compression at the CAD detected areas.

The average compression ratios and computed mean-square-errors (MSE) between the original
and decompression are shown in Table IIl. We found that the CAD guided compression method
received very small MSE improvement although it used a significant number of computer space (or bit
rate) to preserve the full data accuracy of the suspected calcifications. This mainly is because that the
suspected microcalcifications occupy very small area as compared to the whole breast region.
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Table III. Compression Ratios and Mean-Square-Errors of the Three Compression Modes in the First

Observer Study.
Mode A e e
’ » ’ | 0.3 bit/pixel 0.1 bit/pixel s
Procedqrg |+ lossless for spots |+ lossless for spots 0.1 bitpixel

Average Bit Rate 0.43 bit/pixel 0.23 bit/pixel 0.1 bit/pixel

Compression Ratio 27:1 52:1 120:1

Mean Square Error 50.73 102.72 105.63

(Standard Devation) (36.81) (62.48) (63.97)

Table IV. Qualitative measures by comparing the paired images in the First Observer Study (Original
and Compressed).

Original Worse Than Compressed 7 4 1 6 2 3 1 0 2 1 0 0
of which:
- same, but in favor of compressed 3 4 1 5 2 0 0 0 2 1 0] 0
- slightly worse 4 O 0 1 0 3 1 0 0 0 O 0
- moderately worse 0 0 0 0 0 0 0 0 0 0 0 0
Original Better Than Compressed 7 5 10 4 11 15 1 7 7 0 2 3
of which:
- same, but in favor of original 6 1 4 4 [ 9 1 3 2 0 2 0
- slightly better 1 4 5 0 5 5 0 4 4 0 0 3
- moderately better 0 0 1 0 Q 1 0 0 1 0 Q 0
No Difference 36 16 14 40 12 7 48 18 16 49 23 22

‘Type A - Compression with preservation of suspicious calcifications; Compression rate: 0.43 bit/pixel (0.3+0.13); Total 50 Cases
iType B - Compression with presenvation of suspicious calcifications; Compression rate: 0.23 bit/pixel {0.1+0.13); Total 25 Cases
i Type C - Global compression; Compression rate: 0.1 bit/pixel; Total 25 Cases

Table TV illustrates the results of the radiologist’s qualitative measures while comparing the
original and compressed image pair. We found that no difference could be observed between the
original and decompressed images at a bit rate of 0.43 bit/pixel. In fact, it is interesting that the
radiologist seemed slightly in favor of the appearances of microcalcifications and edges in the
compressed mammograms. The radiologist identified 20% of the compressed images at 0.1 bit rate
suffering from minor blurring artifacts and 6% of the compressed images possessing greater edge
sharpness. Without using lossless compression for microcalcifications, the radiologist could identify
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20% of the less sharp microcalcifications on the compressed mammograms at 0.1 bit rate. The
radiologist also identified that 18% and 6% of the compressed images at 0.1 bit rate possess degraded
overall image quality and higher image noise, respectively. Degradation of image quality in compressed
images at 0.1 bit rate is highly associated with unsharpness of microcalcifications and edges. The image
quality degradation at 0.1 bit rate is also correlated with the size of breast area. It is estimated that if the
size of the breast takes more than one half of the entire mammogram, degradation in image quality and
edge unsharpness would be observed by the radiologist.

We also compared the compression rate and breast area and successfully identified cases that
possessing higher breast area would suffer observable low quality. On the other hand, for compression
rates higher than or equal to 0.1bit/pixel and breast area less than or equal to 40%, no degradation can be
identified relatve to their original counterpart in overall image quality, overall noise pattern, and edge
sharpness. For compression rates higher than or equal to 0.1bit/pixel and breast area less than or equal
to 25%, no degradation can be identified as inferior microcalcifications. Therefore, we pre-assessed that
the threshold of area-equalized compression rate for the background including edges is 0.25 bit/pixel
(0.1bit/pixel divided by 40%) and the threshold of area-equalized compression rate for the
microcalcification is approximately 0.4 bit/pixel (0.1 bit/pixel divided by 25%).

(2). The Second Observer Study

In this study, we compared two different compression methods: (1) using an area-equalized
compression rate at 0.25 bit/pixel with preservation of microcalcifications to compress and decompress
the mammograms and (2) using an area-equalized compression rate at 0.4 bit/pixel to compress and
decompress the mammograms. The conventional bit rate and area-equalized (AEQ) bit rate are defined
below:

Bit rate = total number of bits used to encode the data / total number of pixels in the image (1)

AEQ bit rate = total number of bits used to encode the data / total number of pixels within the breast.

2)

The two decompressed images from the same original mammograms using the two compression
methods were randomly displayed on the monitors (right or left). All one hundred cases were used in
this study. Other reading parameters and setting were identical as in the first experiment. The reader
was asked to rate image quality in the same four image quality categories. The same questionnaire was

used.

In this experiment, no image was rated better than its counterpart by the radiologists. However,
the radiologist favored microcalcifications of 55 cases that were compressed and decompressed through
the first method (i.e., 0.25 AEQ bit/pixel with preservation of microcalcifications). However, the
radiologist also favored edge characteristics of 8 cases that were compressed and decompressed through
the first method. We believe that the radiologist’s assessments in these eight cases were somewhat
influenced by favoring the microcalcifications on the images. No image was identified as a higher
quality image over its counterpart by the radiologist in terms of overall image quality and overall noise
pattern. No image compressed by the second compression method (i.e., 0.4 AEQ bit/pixel) was in favor
by the radiologists. Table V shows the summary results of the observer study. Table VI shows the bit
rate used and the average MSE of the decompression images for each category. Note that the bit rate of
the first method includes the wavelet compressed data and the lossless compressed data of the suspected
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calcification areas. Although the first compression method spent Jess computer space to code the overall
breast area than the second method did, the first compression method used more computer space to
preserve the 10x10 pixels area of all suspected microcalfications, the effective compression bit rates
were approximately the same for both methods. We found that the first method produced higher quality
in clinically significant features. Although the overall MSEs produced by the first compression method
were markedly worse than those produced by the second method, the degradation was not observable by
the breast radiologist. Nevertheless, the first compression method generates error-free suspected
calcifications that were appreciable and in favor by the radiologist.

Table V. Qualitative measures by comparing the paired images in the Second Observer Study.
(Compression Methods 1 and 2).

Ca tegory‘;;’k qalclglizra?;éns - She
Total 100
of which:
In favor of the first method 55 8 0 0
In favor of the second method 0 0 0 0
No Difference ‘ 45 92 100 100

Table V1. Compression Ratios and Mean-Square-Errors of the Two Compression Methods in the Second

Observer Study.
“The First Method - -
RN ... {0.25 AEQ bit/pix
Category " +lossless spots)
. Bit Rate (Bit/pixel)
_ ‘Mean (SD) ~ = ean _
All 0.149(0.05) 0.141(0.05) 55
Micro-calcifications:
In favor of the first method 0.146(0.06) 94 0.135(0.05) 65
No Difference 0.152(0.04) 93 0.148(0.05) 53
Edge Sharpness:
In favor of the first method 0.195(0.09) 92 0.159(0.08) 49
No Difference 0.145(0.05) 95 0.140(0.05) 55

(c.4) Conclusions and discussion of the compression studies

In this study, we used conventional compression testing methods with and without the CAD
guidance to evaluate the decompressed images. We were able to identify the threshold of area-equalized
bit rate for overall breast area and the threshold for encoding quality microcalcifications. We used these
two thresholds to compress the mammograms. All four image-quality categories of all compression
images were deemed more than adequate. However, the radiologist favored fully preserved
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microcalcifications on 55 out of 100 images (55% of the test database). This study also showed that
neither edge nor overall image quality degradation could be observed by the radiologist using area-
equalized bit-rate of 0.25 AEQ bit/pixel and 0.4 AEQ bit/pixel. Therefore, CAD can be used to guide
image processing method to preserve or enhance clinically significant features. Our results clearly
indicate that the CAD guided compression method with adequate bit rate will fully preserve the quality
of microcalcifications and suspected microcalcifications without sacrificing the edge sharpness and
overall image quality.

Approximately 11,500 suspected calcifications were reconstructed in this study. These CAD
detected suspected areas were losslessly decompressed at their original places among other breast
parenchyma on the lossy compressed mammograms. The radiologist could not recognize any blocky
artifact between lossless and lossy boundaries even on magnified view with contrast adjustable display.
These differences, however, are observable on the enhanced subtraction images as shown in Figures 7
and 8.

In this project, we proposed to use a highly sensitive CAD system to guide the compression

method to preserve clinically significant image patterns. Our study demonstrates that the success of this
approach.
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(6)

Key Research Accomplishments

e Start the pilot clinical study at the Breast Imaging clinic of University of Michigan Health
System and at the Georgetown University Medical Center

e Collect about 1,400 patient cases with and without CAD reading at the two sites.

e Analyze the effects of CAD on radiologists’ reading on 1,300 cases and estimate the
performance of the CAD system in the patient population.

e Conduct two observer performance studies to compare microcalcification detection on

mammograms without compression, with conventional compression, and with CAD-guided
compression
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(7)  Reportable Outcomes
Publications

University of Michigan

Journal Articles

1. Chan HP, Sahiner B, Wagner RF, Petrick N. Classifier design for computer-aided diagnosis:
Effects of finite sample size on the mean performance of classical and neural network classifiers.
Medical Physics 1999; 26: 2654-2668.

2. Sanjay-Gopal S, Chan HP, Wilson TE, Helvie MA, Petrick N, Sahiner B. A regional registration
technique for automated interval change analysis of breast lesions on mammograms. Medical
Physics 1999; 26: 2669-2679.

3. Hadjiiski LM, Sahiner B, Chan HP, Petrick N, Helvie MA. Classification of malignant and
benign masses based on hybrid ART2LDA approach. IEEE Transactions on Medical Imaging
1999; 18: 1178-1187.

Articles Accepted for Publication:

I. Chan HP, Helvie MA, Petrick N, Sahiner B, Adler DD, Paramagul C, Roubidoux MA, Blane CE,
Joynt LK, Wilson TE, Hadjiishi LM, Goodsitt MM. Digital mammogramphy: observer
performance study of effects of pixel size on radiologists’ characterization of malignant and
benign microcalcifications. Academic Radiology.

Articles Submitted for Publication:

1. Hadjiiski LM, Chan HP, Sahiner B, Petrick N, Helvie MA. Automated registration of breast
lesions in temporal pairs of mammograms for interval change analysis — local affine
transformation for improved localization. Medical Physics.

2. Zhou C, Chan HP, Petrick N, Helvie MA, Goodsitt MM, Sahiner B, Hadjiiski LM.
Computerized image analysis: Estimation of breast density on mammograms. Medical Physics.

Book Chapter:

1. Chan HP, Petrick N, Sahiner B. Chapter 6. Computer-aided breast cancer diagnosis. In: Artificial
Intellicence Techniques in Breast Cancer Diagnosis and Prognosis. Pp. 179-264. Ed. Jain A, Jain A,
Jain S. Jain LC, Series in Machine Perception and Artificial Intelligence, Vol. 39 (World Scientific:
NJ), 2000.
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Conference Proceedings

1. Petrick N, Chan HP, Sahiner B, Helvie MA, Paquerault S. Evaluation of an automated computer-
aided diagnosis system for the detection of masses on prior mammograms. Proc. SPIE 3979.
2000: 967-973.

2. Hadjiiski LM, Chan HP, Sahiner B, Petrick N, Helvie MA, Paquerault S, Zhou C. Interval
change analysis in temporal pairs of mammograms using a local affine transformation. Proc.
SPIE 3979. 2000: 847-853.

3. Petrick N, Sahiner B, Chan HP, Helvie, MA, Paquerault S. Preclinical evaluation of a CAD
algorithm for early detection of breast cancer. In: Proceedings of The 5Sth International Workshop
on Digital Mammography. IWDM-2000. Toronto, Canada. June 11-14, 2000 (in press).

Abstracts and Presentations

1. Petrick N, Chan HP, Sahiner B, Helvie MA, Paquerault S. Evaluation of an automated computer-
aided diagnosis system for the detection of masses on prior mammograms. Presented at the SPIE
International Symposium on Medical Imaging, San Diego, CA, February 12-18, 2000.

2. Hadjiiski LM, Chan HP, Sahiner B, Petrick N, Helvie MA, Paquerault S, Zhou C. Interval
change analysis in temporal pairs of mammograms using a local affine transformation. Presented
at the SPIE International Symposium on Medical Imaging, San Diego, CA, February 12-18,
2000.

3. Petrick N, Sahiner B, Chan HP, Helvie, MA, Paquerault S. Preclinical evaluation of a CAD
algorithm for early detection of breast cancer. Presented at The 5th International Workshop on
Digital Mammography. IWDM-2000. Toronto, Canada. June 11-14, 2000.

4. Chan HP, Hadjiiski L, Petrick N, Helvie MA, Sahiner B, Paramagul C, Gurcan MN, Lo SCB.,
Freedman MT, Dorfman DD, Berbaum KS. Pilot clinical study of a computer-aided diagnosis
workstation for mammography. Presented at the Era of Hope Meeting, U. S. Army Medical
Research and Materiel Command, Department of Defense, Breast Cancer Research Program,
Atlanta, Georgia, June 8-12, 2000.

5. Hadjiiski L, Petrick N, Chan HP, Sahiner B, Helvie MA, Zhou C, Gurcan MN, Paquerault S.
Regional registration of masses on current and prior mammograms using DWCE segmentation.
Presented at the Chicago 2000-World Congress on Medical Physics and Biomedical
Engineering. Chicago, Illinois, July 23-28, 2000.

6. Zhou C, Chan HP, Petrick N, Goodsitt MM, Paramagul C, Hadjiiski LM. Computerized image
analysis: breast segmentation and nipple identification on mammograms. Presented at the
Chicago 2000-World Congress on Medical Physics and Biomedical Engineering. Chicago,
Illinois, July 23-28, 2000.

7. Chan HP, Sahiner B, Hadjiiski LM, Petrick N, Helvie MA, Goodsitt MM. Computer-aided

breast cancer diagnosis: Effects of pixel size on computerized classification of
microcalcifications in comparison with radiologists’ performance. Accepted for presentation at
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10.

1L

12.

13.

the 86th Scientific Assembly and Annual Meeting of the Radiological Society of North America,
Nov. 26-Dec. 1, 2000, Chicago, Illinois.

Zhou C, Chan HP, Helvie MA, Petrick N, Goodsitt MM, Sahiner B, Hadjiiski LM. Computer-
aided estimation of mammographic breast density. Accepted for presentation at the 86th
Scientific Assembly and Annual Meeting of the Radiological Society of North America, Nov.
26-Dec. 1, 2000, Chicago, lllinois.

Hadjiiski LM, Sahiner B, Chan HP, Petrick N, Helvie MA, Gurcan MN. Computer-aided
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temporal pairs of mammograms. Accepted for presentation at the 86th Scientific Assembly and
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correspondence on two mammographic views - a new method of false-positive reduction for
computerized mass detection. Accepted for presentation at the SPIE International Symposium on
Medical Imaging, San Diego, CA, February, 2001.

Paquerault S, Petrick N, Chan HP, Sahiner B, Dolney AY. Improvement of mammographic
Jesion detection by fusion of information from different views. Accepted for presentation at the
SPIE International Symposium on Medical Imaging, San Diego, CA, February, 2001.
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change of mammographic features for computer-aided characterization of malignant and benign
masses. Accepted for presentation at the SPIE International Symposium on Medical Imaging,
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Paquerault S, Petrick N, Chan HP, Sahiner B, Helvie MA. Computer-Aided Breast Cancer
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8) Conclusions

We have been conducting the pilot clinical study of the effects of CAD on radiologists’ reading
of screening mammograms this year. We have collected over 1,400 cases and analyzed the results of
about 1,300 cases. The overall sensitivity of the CADView system was found to be reasonably close to
our prediction based on laboratory tests and also is consistent between the two sites. More importantly,
the computer detected 100% of the lesions that were recommended for biopsy in both sites, all fine
needle biopsy cases at the GU site, and missed only one of the fine needle biopsy cases at the UM site.
71% and 75% of the short-term follow up cases were detected by the CAD system. Whether any of the
missed short-term follow up cases will turn out to be malignant remains to be followed. The CAD
system caused 19 additional callbacks at the UM site, of which 6 were recommended short-term follow
up. We will also track these follow-up cases to determine if any of them will turn out to be malignant.
The CAD system only caused 2 additional callbacks at the GU site and one of these was found to be
malignant. The CAD system detected both malignant cases at the UM site, whereas causing one
additional benign biopsy. It detected one additional cancer at the GU site that was not originally called
by the radiologist and two other cancers that were also detected by radiologists. The pathology of some
other cases at the GU site is still being tracked. Since the number of cases collected so far is still small
our collaborator at the University of Iowa was not able to perform statistical analysis on the data yet.
We will continue to collect cases at the UM and GU sites in the coming year.

Since the cancer rate in the screening population is only 3 to 5 per 1000, the number of patients
planned for this pilot clinical study will not be sufficient to draw statistically significant conclusion on
the effects of CAD on the sensitivity of mammographic screening. However, this pilot study will
provide an evaluation of the performance of the CAD system in the clinical screening environment and,
more importantly, an assessment of the effects of CAD on the callback rate of the radiologists for
reading screening mammograms. The results obtained from this pilot study will be important for the
design of a large-scale pivotal clinical study in the future.

Two observer performance studies have been conducted for the CAD-guided image compression
project. It was found that the CAD guided compression method with adequate bit rate will fully preserve
the quality of microcalcifications and suspected microcalcifications without sacrificing the edge
sharpness and overall image quality. Neither edge nor overall image quality degradation could be
observed by the radiologist using area-equalized bit-rate of 0.25 bit/pixel and 0.4 bit/pixel. The CAD-
guided compression can therefore reduce the image transmission and storage requirements for digital
mammograms by a factor of 30 to 50 without causing perceivable degradation of image quality. An
effective image compression method for picture archiving and communication will facilitate the
implementation of telemammography and digital mammography. Both approaches are expected to
improve patient care, especially in remote and rural areas.

Because of the budget reduction, the change in the strategy for the CAD workstation
development, and the addition of the mass detection program, as described in the previous reports, as
well as the incompatibility of different workstations and operating systems, there was a delay in starting
the pilot clinical study. We have requested and obtained approval for a no-cost-time-extension of
another year to continue collecting patient cases.
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A regional registration technique for automated interval change analysis
of breast lesions on mammograms
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and Berkman Sahiner
Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109-0030

(Received 11 November 1998; accepted for publication 13 September 1999)

Analysis of interval change is a useful technique for detection of abnormalities in mammographic
interpretation. Interval change analysis is routinely used by radiologists and its importance is
well-established in clinical practice. As a first step to develop a computerized method for interval
change analysis on mammograms, we are developing an automated regional registration technique
to identify corresponding lesions on temporal pairs of mammograms. In this technique, the breast is
first segmented from the background on the current and previous mammograms. The breast edges
are then aligned using a global alignment procedure based on the mutual information between the
breast regions in the two images. Using the nipple location and the breast centroid estimated
independently on both mammograms, a polar coordinate system is defined for each image. The
polar coordinate of the centroid of a lesion detected on the most recent mammogram is used to
obtain an initial estimate of its location on the previous mammogram and to define a fan-shaped
search region. A search for a matching structure to the lesion is then performed in the fan-shaped
region on the previous mammogram to obtain a final estimate of its location. In this study, a
quantitative evaluation of registration accuracy has been performed with a data set of 74 temporal
pairs of mammograms and ground-truth correspondence information provided by an experienced
radiologist. The most recent mammogram of each temporal pair exhibited a biopsy-proven mass.
We have investigated the usefulness of correlation and mutual information as search criteria for
determining corresponding regions on mammograms for the biopsy-proven masses. In 85% of the
cases (63/74 temporal pairs) the region on the previous mammogram that corresponded to the mass
on the current mammogram was correctly identified. The region centroid identified by the registra-
tion technique had an average distance of 2.8+1.9 mm from the centroid of the radiologist-
identified region. These results indicate that our new registration technique may be useful for
establishing correspondence between structures on current and previous mammograms. Once such
a correspondence is established an interval change analysis could be performed to aid in both
detection as well as classification of abnormal breast densities. © 1999 American Association of
Physicists in Medicine. [S0094-2405(99)00612-4]

Key words: image registration, computer-aided diagnosis, computer vision, interval change, breast
cancer

. INTRODUCTION grams obtained in previous years for detecting and evaluat-
ing breast lesions and for identifying interval changes. The
importance of interval change analysis in mammographic in-
terpretation has been established in clinical practice. !0 It
can be expected that analysis of changes in mammographic
features between current and previous mammograms of the
patient will also be an important component of a CAD sys-
tem for both the detection and the classification tasks. The
ability for automated analysis of interval changes would fur-
ther the ability of CAD to offer an objective second opinion.

This improvement, in turn, could increase the positive pre-

Mammography is currently the most effective method for
early breast cancer detection.? A variety of computer-aided
diagnosis (CAD) techniques have recently been developed to
detect mammographic abnormalities and to distinguish be-
tween malignant and benign lesions.>8 Knowledge from di-
verse areas such as signal and image processing, pattern rec-
ognition, computer vision, artificial intelligence, and neural
networks has been used to develop algorithms to be imple-
mented within a CAD scheme. Varying degrees of success
for these approaches have been reported in the literature. One

common feature of most of these CAD techniques is that
they use a single mammogram for analysis. However, some
malignancies may only manifest as a new density on mam-
mograms without associated calcifications or masses, others
distinguish themselves from benign lesions only by their
relatively rapid changes in sizes. Therefore, radiologists rou-
tinely use several mammographic views along with mammo-

2669 Med. Phys. 26 (12), December 1999

0094-2405/99/26(12)/2669/11/$15.00

dictive value of mammography, reduce the number of benign
biopsies, and hence reduce both cost and patient morbidity.

While a number of CAD schemes use only a single mam-
mogram, the simultaneous use of more than one mammo-
gram has been under investigation for some time. Several
researchers have used views of the contra-lateral breast for
detecting masses and developing densities. For instance, Yin
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et al.'™? have utilized architectural asymmetry between the
right and left breasts to detect masses. While it is widely
accepted that interval changes in mammographic features are
very useful for both detection and classification of breast
abnormalities, the development of CAD techniques to use
this information has achieved limited success.!*!® Sallam
and Bowyer'? have proposed a warping technique for mam-
mogram registration. They manually obtained control points
and calculated a mapping function for mapping each point on
the current mammogram to a point on the previous mammo-
gram. The mapping function was obtained based on local
affine transformations, as well as interpolation and surface
fitting techniques. A drawback of this technique is the need
for manual demarcation of control points. Brzakovic et al.}*
have investigated a three-step method for comparison of
most recent and previous mammograms. They first registered
two mammograms using the method of principal axis, and
partitioned the current mammogram using a hierarchical
region-growing technique. The breast regions in the two
mammograms were aligned with respect to each other by
means of translation, rotation, and scaling. Although the
technique was evaluated on a total of 64 images obtained
from eight cases, this work mainly aimed toward detecting
cancerous changes in breast tissue and, therefore, no quanti-
tative analysis of registration accuracy was presented. Vujo-
vic and co-workers'>!® have proposed a multiple-control-
point technique for mammogram registration. They first
determined several control points independently on the cur-
rent and previous mammograms based on the intersection
points of prominent anatomical structures in the breast. A
correspondence between these control points was established
based on a search in a local neighborhood around the control
point of interest. In a more recent publication,!” they have
evaluated their approach for establishing the correspondence
between control points extracted from two mammograms us-
ing 29 temporal image pairs, and presented a qualitative
evaluation based on an observer study. They have demon-
strated that 91% of 103 computer-matched control points
were in agreement with those matched by a radiologist. An
important assumption of their work was that the distances
between the control points did not change significantly be-
tween the two mammograms. However, this assumption is
not necessarily a valid one. Variations in compression could
potentially cause a large variation in the relative distances
between the control points. Furthermore, the control points
representing the intersections of elongated structures do not
always have correspondences on the two mammograms.
Most of these points are two-dimensional projection image
of structures at different depths of an elastic and compress-
ible three-dimensional breast. The projected intersection
points can thus vary from image to image and are not invari-
ant lankmarks. As noted by the authors, the potential control
points are not points that are naturally selected by a radiolo-
gist when examining mammograms. Hence, the significance
of these points is debatable.

An important factor that may limit the success of the
above-mentioned techniques is that the extraction of any
meaningful information from previous mammograms first re-
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quires a common frame of reference between the current and
previous mammograms. Several complicating factors con-
found obtaining such a frame of reference. These factors
include differences in breast compression and positioning be-
tween the current and previous mammograms, differences in
the imaging technique between the two examinations, and
changes in breast structure, size, and tissue density between
the two images with patient age. As a result, the mammo-
graphic appearance of breast tissue on the current and previ-
ous mammograms of the same patient may vary consider-
ably. Although these variabilities have not been quantified
experimentally, they can be observed easily from most mam-
mograms. Conventional registration techniques work well
for applications involving rigid objects. Because of the elas-
ticity of the breast tissue, the absence of obvious landmarks,
and the large variability in the relative positions of the breast
tissues projected onto the mammogram from one examina-
tion to the other, these techniques may not be optimal for
registration of breast images.

In mammographic interpretation, a radiologist routinely
compares the current mammogram with previous mammo-
grams (if available) of the same view in order to detect
changes in mammographic features. For example, if a mass
is detected in the current mammogram, the radiologist
searches for that mass in the previous mammogram to deter-
mine if this is a new or developing density. If the corre-
sponding mass is found on the previous mammogram, then
the radiologist compares the current and previous mass size
and estimates if the mass has increased in size. To facilitate
these comparisons, we plan to develop automated methods to
detect the interval changes as a part of a computer-aided
diagnostic system. As a first step, we have developed a novel
method for automatic registration of lesions on temporal
pairs of mammograms. In our approach, the computer emu-
lates the search method used by many radiologists for finding
corresponding structures on mammograms. The method aims
at registering a small region containing a suspected mass on
the most recent mammogram of the patient with one on a
mammogram obtained from a previous year. Our regional
registration technique involves three steps: (1) identification
of a suspicious structure on the most recent mammogram, (2)
initial estimation of the location on a previous mammogram
of the region corresponding to the suspicious structure and
the definition of a search region which encloses the object of
interest on the previous mammogram, and (3) accurate iden-
tification of the location of the matched object within the
search region. After the two matched lesions are identified,
their characteristic features can be automatically extracted
and interval changes estimated. In the present study, we fo-
cused on the development and the evaluation of the regional
registration technique, rather than to solve the entire interval
change analysis problem. The subsequent steps in the inter-
val change analysis are beyond the scope of this study.

In the following sections we will provide a detailed de-
scription of our regional registration technique for temporal
registration of mammograms and the results of a quantitative
evaluation using a data set of 74 temporal image pairs. Al-
though we evaluated a semiautomated version of the tech-
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nique in this preliminary study, it can be fully automated by
incorporating a nipple detection step so that no user interac-
tion will be required.

Il. MATERIALS AND METHODS

A. Regional registration and mammogram
correspondence

As the term indicates, regional registration is a local
rather than a global registration technique. It is a multistep
procedure and utilizes computer-detected objects in the most
recent (hereafter termed current) mammogram. In the context
of this paper, a current mammogram is either the latest mam-
mogram of the patient, or the latest mammogram before bi-
opsy. The detected objects could be either true masses (be-
nign or malignant) or false positives (normal breast
structurcs). Regional registration then finds a matching ob-
ject on a previous mammogram. The three major steps in
regional registration are illustrated in Fig. 1 and details of the
technique are described below.

In the first step of regional registration, the breast region
is segmented from the background on both the current and
the previous mammograms. For this purpose we have used a
breast boundary detection algorithm previously developed in
our laboratory.'*? This algorithm could successfully track
the breast boundaries in over 90% of the 1000 mammograms
in a previous study. It performed reliably on all the images in
our database. After extracting the breast border from the
mammogram, the location of the nipple is estimated on both
the current and the previous mammograms. Any automated
method?!?? can be used for finding the nipple location. How-
ever, in this study, the nipple location was manually identi-
fied by a radiologist for all images in our data set. The breast
border and the nipple location now form the basis of a global
breast alignment (GBA) procedure illustrated in Fig. 2. Since
the sizes and the orientations of the two images could vary
between the current and previous mammograms, a Common
frame of reference is needed. The GBA procedure has been
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FIG. 2. Global breast alignment based on the mutual information between
the two breast regions. N,—nipple location in current mammogram,
N ,—nipple location in previous mammogram, N—nipple location for both
current and previous mammograms after translating them to the common
frame of reference. The previous mammogram is rotated until the mutual
information between the two mammograms is maximized.

devised specifically to provide such a frame of reference. We
first define a new frame of reference with the nipple location
on the current mammogram (N_) as the origin. The previous
mammogram is translated so that its nipple location (N,)
aligns with the origin in the common frame of reference as
shown in Fig. 2. Using the origin as the pivot point, we rotate
the previous mammogram to align the breast regions in the
two images.

We have evaluated two different methods for estimation
of the optimum rotation angle. The first method is based on
maximization of the overlap area, and the second method is
based on maximization of the mutual information (MI)2*
between the two segmented breast regions. To determine the
MI, we first rescale the breast portion of both mammograms
to a 0-255 gray scale. For a given rotation angle 6, the
two-dimensional (2D) histogram h4(i,j) of the gray levels
for the corresponding pixels on the current mammogram and
the previous mammogram is constructed. Here i refers to the
gray level on the current mammogram and j refers to the
gray level on the previous mammogram rotated by an angle
#. The probability density of the gray scale co-occurrences is
estimated from the 2D histogram as

o helin))
f”("J)_W’ 1)

where 0<i,j<255, 0<m,n=<255. The mutual information
(M) between the two images for a specific rotation angle 6
is computed as

MI,=, fo(i.j)* log, folt.1) %)

iJ Emfo(i’m)Enfo(”aj) '
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FiG. 3. Polar coordinate system defined using the nipple location and the
nipple—centroid axis. The search region for finding a matching object on the
previous mammogram is shown as the shaded region.

The above-mentioned procedure is repeated for several rota-
tion angles and the angle 6, which provides the maximum
mutual information is chosen for global breast alignment of
the previous mammogram and the current mammogram.
Note that while the area overlap method for GBA uses the
binary image after segmentation, the MI-based method uses
the original gray scale image. The effects of the two methods
on the accuracy of regional registration will be discussed
later in Sec. IV. Once the two images are aligned in the
common frame of reference, the centroid of the breast region
is estimated, and the nipple—centroid axis is defined for both
mammograms. For comparison we also show in Sec. III re-
gional registration results based on computing the centroids
of the two breast regions without global breast alignment.
The nipple—centroid axis forms the basis for the second step
of regional registration.

In the second step, suspicious regions are automatically
segmented from the breast region on the current mammo-
gram. This can be accomplished by using a density-weighted
contrast enhancement (DWCE) technique® previously de-
veloped in our laboratory. While the use of the DWCE tech-
nique is not critical for regional registration, it does help
automate the entire procedure. Alternatively, a radiologist
can manually identify a suspicious object or a region of in-
terest on the current mammogram and the regional registra-
tion technique can be used to identify a corresponding region
on the previous mammogram. Once suspicious objects have
been identified on the current mammogram, the centroid of
each object is estimated. A polar coordinate system is then
defined using the nipple as the origin and the nipple—centroid
axis as the 0° axis on both images. This is illustrated in Fig.
3. The location of the centroid of a suspicious object on the
current mammogram is determined as (r, ). We then com-
pute two scale factors—the radial scale factor s; and the
angular scale factor s,. These scale factors have been de-
vised to provide a first-order correction for factors such as
breast compression differences between the current and pre-
vious mammograms, differences in image magnification and
size, and changes in overall breast shape between the two
images. The radial scale factor s, is estimated as the ratio of
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the nipple—centroid distances on the previous and current
images. The angular scale factor s, is estimated as the ratio
of the angular width of the breast on the previous image at
radius 5,7 to that on the current image at radius r. The initial
estimate of the corresponding location of the suspicious ob-
ject on the previous mammogram is then obtained as
(517,5,0).

Using the initial estimate of the centroid of the object on
the previous mammogram, we can define a fan-shaped
search region bounded by 5,7 & and 5,0~ € as illustrated in
Fig. 3. The object found on the current mammogram is then
used as a template to search for a matching object in the
search region on the previous mammogram. The size of the
search region (defined by & and €) depends on the variability
between mammograms obtained from one examination to the
other. Since it is difficult to predict the variability of an elas-
tic and deformable object such as the breast by any analytical
method, we have determined this variability experimentally
from the mammograms in our data set. The variation in com-
pression can cause a change in the relative locations of vari-
ous breast structures on these images as well as a rotation of
the breast boundary with respect to the fixed image coordi-
nates. By relating the position of a breast structure to the
corresponding nipple—centroid axis, and by performing a
search in the corresponding search region, we can reduce the
effect of this variability. In this study we have estimated the
size of the search region required to enclose all correspond-
ing objects on the previous mammogram using ground truth
objects identified on the previous mammograms by a radi-
ologist. The distance of the initial estimate of the center of
the search region from the centroid of the ground truth object
was also estimated.

The third and final step in the regional registration proce-
dure involves a systematic search to identify a corresponding
structure within the fan-shaped search region on the previous
mammogram. In this study we have evaluated two different
search criteria. The first criterion is based on gray scale tem-
plate matching. A rectangular gray scale template centered
on the mass centroid is extracted from the current mammo-
gram. The choice of the size of the template region can affect
the accuracy of the registration technique. The minimum re-
quired size of a rectangular template is, of course, a rectan-
gular region which encloses the mass exactly. However, one
can also include a small portion of the background region in
the template. We have analyzed the performance of our al-
gorithm using two different sizes for this template. The first
includes a 1-pixel-wide background region all around the
boundary of the suspicious object while the second includes
a 5-pixel-wide background region. For each pixel (i) in the
fan-shaped region on the previous mammogram, a region of
interest (ROI) centered on the pixel and of the same size as
the mass template is extracted. We denote the (m,n)th pixel
in the gray scale template extracted from the current mam-
mogram as p(m,n) and that from the ROI obtained from the
fan-shaped region as g, j(m,n). A correlation measure de-
fined as

s sttt
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C..= 2 n(p(m,n)—p)(q; ;(m,n)—7q)
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is then obtained for each pixel (i,j) within the search region
on the previous mammogram. Here the summation is per-
formed over the mass template, and p and g denote the av-
erage pixel values in the template and ROI, respectively. The
correlation values in the search region are then smoothed by
a 3X3 averaging kernel to reduce fluctuations. The final
estimate of the location of the mass centroid on the previous
mammogram is obtained as the location corresponding to
maximum correlation. The second search criterion is based
on maximizing the mutual information between the mass
template and the ROI extracted from within the search re-
gion. The MI approach is similar to that described earlier for
alignment of the breast regions, except that the regions to be
matched are limited to the size of the mass template.

Once a corresponding structure is found on the previous
mammogram for a suspicious object on the current mammo-
gram, it can be used for an interval change analysis within a
CAD scheme, as we have shown in an independent study.26
If the search procedure in the fan-shaped region does not
yield a corresponding region, then the suspicious object on
the current mammogram can be considered as a newly de-
veloped density. Objects for which no corresponding object
can be found on the previous mammogram can be analyzed
with methods designed for single images in an overall CAD
scheme. Note that in this study the search techniques are
structured in a way to always determine a matching object.
Search criteria to identify new densities will be developed in
future studies.

©)

B. Image acquisition and data set

The data set for this study consisted of 127 images ob-
tained from the files of 34 patients who had undergone bi-
opsy at the University of Michigan. From these 127 mam-
mograms, 74 temporal pairs of images were obtained. The
current mammogram of each temporal pair exhibited a
biopsy-proven mass. All previous mammograms in the 74
temporal pairs contained a mass, a structure, or a density
which the radiologist could match to the mass detected in the
corresponding current image. Since some patient files con-
tained a sequence of mammograms over three years, the
number of temporal pairs was larger than half the number of
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images. The 74 temporal image pairs were comprised of 43
cranio-caudal views and 31 mediolateral-oblique views.

The mammograms of 20 temporal pairs were digitized
with a LUMISYS DIS-1000 laser scanner at a pixel resolu-
tion of 0.1 mmX 0.1 mm and with 12 bit resolution. The digi-
tizer was calibrated so that the gray values were linearly and
inversely proportional to the optical density (OD) within the
range of 0.1-2.8 OD units, with a slope of —0.001 OD/pixel
value. Outside this range, the slope of the calibration curve
decreased gradually. The OD range of this digitizer was
0-3.5. The mammograms of the remaining 54 temporal pairs
were digitized with a LUMISCAN 85 laser scanner at a pixel
resolution of 0.05 mmX0.05 mm and with 12 bit resolution.
This digitizer was calibrated so that the gray values were
linearly and inversely proportional to the OD within the
range 0—4 OD units, with a slope of —0.001 OD/pixel value.
All images were subsequently reduced to 0.8 mm resolution
by averaging adjacent 8X8pixels (20 pairs) or 16
X 16 pixels (54 pairs). Since the same digitizer was used for
digitizing all films of the same case, the differences in the
digitizers would have no effect on the analysis of each image
pair. Given the small differences between the two laser digi-
tizers and the large differences in the imaging technique and
in the breast appearance from one case to another, it could be
expected that the use of cases collected with the two different
digitizers would not affect the evaluation of the registration
technique.

While the regional registration technique can be used for
determining a corresponding structure or region for any
structure (both false positives and masses) in the breast, in
this study we have analyzed its accuracy on biopsy-proven
masses alone. The location of the mass on the current mam-
mogram was identified by an MQSA-certified radiologist ex-
perienced in breast imaging. The radiologist manually iden-
tified the corresponding region on the previous mammogram
and the nipple location on both the current and the previous
mammograms using an interactive image analysis tool on a
UNIX workstation. For each current mammogram, the
boundary of the mass was manually delineated by the radi-
ologist using an image display program developed in our
laboratory. A bounding box enclosing the corresponding ob-
ject on the previous mammogram was provided by the radi-
ologist for each of the masses. Each mass as well as the
corresponding structure on the previous mammogram was
rated for its visibility on a scale of 1-10, where the rating of
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1 corresponded to the most visible category. The size of the
mass on the current mammogram as well as the size of the
corresponding structure on the previous mammogram was
also provided by the radiologist. For previous mammograms
on which the radiologist could not identify a distinct mass,
the ““mass’’ size was given a size of 0 mm. The parenchymal
density was rated based on the BIRADS lexicon. The distri-
butions of the size and visibility ratings for benign and ma-
lignant cases in this data set are shown in Figs. 4 and 5.

C. Evaluation of registration accuracy

The bounding box enclosing the corresponding object on
the previous mammogram provided by the radiologist was
used as the ‘‘ground truth’” to evaluate the accuracy of the
regional registration technique. We have used two different
measures for assessing registration accuracy. The first mea-
sure quantifies whether the corresponding region is correctly
identified by the registration algorithm. This measure is com-
puted simply as the number of cases in which the estimated
centroid location of the mass on the previous mammogram is
inside the bounding box provided by the radiologist. The
second measure quantifies the error in the estimate of the
corresponding region on the previous mammogram and is
defined as the Euclidean distance between the estimated cen-
troid of the corresponding region and the center of the
bounding box provided by the radiologist. Together these
two measures answer the questions: (a) does regional regis-

FiG. 6. Left—most recent or current mammogram. Right—previous mam-
mogram. The breast images are superimposed with the breast borders de-
tected by a breast boundary tracking algorithm.
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tration work? (b) how well does the technique perform in
matching structures between the current and previous mam-
mograms? In Sec. III we provide the results of regional reg-
istration with and without global breast alignment and using
both correlation and mutual information as the search crite-
rion in step 3.

Ill. RESULTS

To provide the reader with a qualitative idea of algorithm
performance we first illustrate the intermediate results at
various stages of the algorithm. Then the results of each of
the three steps of the algorithm are presented with an analy-
sis of the dependence of the performance on various algo-
rithm parameters. Also presented is an analysis of the accu-
racy of regional registration using the error measures defined
in Sec. I C. In the following sections, the term ‘‘initial esti-
mate’’ refers to the estimate of the center of the search re-
gion in step 2 of regional registration. The term *‘final esti-
mate’’ refers to the outcome of the search procedure adopted
in step 3 and represents the overall result of regional regis-
tration.

A. Intermediate results of regional registration

Figures 6-8 show an example of the intermediate and
final results of applying the regional registration technique to
a temporal pair of mammograms. The original digitized
mammograms—current and previous—with the automati-

FiG. 7. Left—location of the mass on the current mammogram. Right—
radiologist-identified region on previous mammogram corresponding to the
mass on the current mammogram.
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Fic. 8. The fan-shaped search region on the previous mammogram. The
initial computer estimate of the centroid location of the region correspond-
ing to the mass is at the center of the search region. The final estimate of the
centroid of the corresponding region (indicated by X) is obtained by using
the correlation criterion within the fan-shaped search region.

cally tracked breast boundaries superimposed, are shown in
Fig. 6. The location of the mass on the current mammogram
is shown in Fig. 7 along with the corresponding radiologist-
identified region on the previous mammogram. Figure 8
shows the fan-shaped search region on the previous mammo-
gram estimated in step 2 of regional registration. The initial
estimate is at the center of this search region which is to be
used in step 3 for localization of the corresponding mass.
The centroid location of the corresponding object estimated
by the algorithm using the correlation measure as the search
criterion is also shown in Fig. 8.

B. Initial estimates and search regions

Figure 9 shows histograms of the Euclidean distance be-
tween the initial estimate of the centroid location of the cor-
responding structure on the previous mammogram and the
center of the bounding box provided by the radiologist. For
the 74 temporal image pairs used in this data set, the average
Euclidean distance error of the initial estimate was 10.5 mm
(std. dev. 6.4 mm) without the GBA procedure and 9.8 mm
(std. dev. 6.0 mm) with the GBA procedure. The overall
accuracy was 46% in both cases, i.e., in 34 of the 74 tempo-
ral image pairs the initial estimate was inside the ground-
truth bounding box. Based on observation of the radial de-
viation errors and the angular deviation errors (defined in
Sec. IV) in Figs. 10 and 11, a search region defined by €
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=0.35+5/r rad and =20 mm with GBA (6=25 mm for no
GBA), where r is the radial distance from the nipple, was
used for the evaluation of the local search criteria used in
step 3 of regional registration.

C. Local search criteria and final estimates

Figure 12 shows the histograms of the Euclidean distance
errors of the final estimate of the corresponding structure
using the correlation measure as the search criterion. Table I
summarizes the results along with the average Euclidean dis-
tance errors and standard deviations using both the correla-
tion and the mutual information search criteria and with and
without the GBA procedure. The average Euclidean distance
errors and deviations for the cases where the final estimate is
inside the ground-truth region identified by the radiologist
and the cases where it is outside are also listed separately.
Regional registration incorporating the GBA procedure and
using correlation as a search criterion has an accuracy of
85%. In 63 of the 74 temporal image pairs, the final estimate
of the location of the corresponding region was inside the
radiologist-identified ground-truth region. The use of mutual
information as a search criterion yielded an accuracy of 74%
(55 out of 74 temporal pairs). The average Euclidean dis-
tance error for regional registration incorporating GBA and
correlation was 4.7 mm (std. dev. 5.8 mm) for all 74 tempo-
ral pairs and 2.8 mm (std. dev. 1.9 mm) in 85% (63/74) of
the temporal pairs. Use of mutual information as a search
criterion in step 3 results in values of 7.2 mm (std dev. 8.6
mm) and 3.0 mm (std. dev. 2.0 mm), respectively, for the
same quantities.

IV. DISCUSSION
A. Initial estimates and search regions

From the histograms of Fig. 9, we observe that the use of
the GBA procedure results only in a marginal improvement
in the initial estimate, if the Euclidean distance error is the
only measure considered. However, the GBA procedure has
a significant effect in reducing the size of the search region
required for regional registration. In order to compute the
required sizes (8 and € in Fig. 3) of the search region, we
computed two quantities—the radial distance deviation and
the angular deviation—using the initial estimate obtained
from step 2 for the 74 temporal image pairs. The radial dis-
tance deviation is defined as the absolute difference between
s;r and r,, where r_ is the radial distance of the center of
the ground-truth region from the nipple location on the pre-

Fic. 9. Histograms of Euclidean dis-
tance between the initial estimate of
the centroid location of the corre-
sponding object and the center of the
radiologist-identified object on the
previous mammogram with and with-
out GBA.
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vious mammogram. The histograms of radial distance devia-
tions for the 74 temporal image pairs with and without the
GBA procedure are shown in Fig. 10. An important obser-
vation is that a & value of 25 mm is needed to include the
centers of the ground-truth structures if the GBA procedure
is not used in step 1. The use of the GBA procedure results
in a decrease in the value of §to 20 mm. This decrease helps
significantly increase the overall accuracy of the regional
registration as discussed below.

In Fig. 11 the angular deviation of the initial estimate is
plotted against the radial distance of the centers of the
ground-truth regions on the previous mammogram. The an-
gular deviation €is defined as 5,6 — 6, where 6, is the angle
between the nipple-ground-truth center vector and the
nipple-centroid axis. In an earlier study?’ using both false
positives and masses, we have observed that the value of €
needed to include the center of the ground-truth region de-
creases with distance from the nipple, i.e., increases with
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FiG. 11. Angular deviation between the initial estimate of the centroid loca-
tion of the corresponding object and the center of the radiologist-identified
object on the previous mammogram with and without GBA. Also shown are
the bounding lines defined using €= 0.35+ 5/r rad.

Medical Physics, Vol. 26, No. 12, December 1999

With GBA
Fic. 10. Histograms of radial distance
deviation between the initial estimate
of the centroid location of the corre-
sponding object and the center of the
radiologist-identified object on the
previous mammogram with and with-
out GBA.
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distance from the chest wall. This may be attributed to the
increased deformability of the breast tissue closer to the
nipple compared to the tissue closer to the chest wall. This
indicates that a possible approach to take into account this
variability is to incorporate a variable €, one which is in-
versely proportional to the radial distance r from the nipple.
For the data set in this study, we have investigated several
forms for this dependence all of which fit under the general
model

e=€ut+K/r.

Here €y, and K are two constants which affect the form of the
dependency. Based on our observation of the angular devia-
tions for the entire data set of 74 temporal pairs we have
chosen €;,=0.35rad and K= 5 rad-mm. As can be seen from
Fig. 11, with these values of € and K, all of the centers of
the ground-truth regions are within the search region. There-
fore, a search region defined by €= 0.35+ 5/r rad, and 6=20
mm (if GBA was applied) or §=25 mm (if GBA was not
applied) was used for evaluation of the local search criteria
used in step 3 of regional registration.
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FiG. 12. Histograms of Euclidean distance error for corresponding regions
estimated by regional registration using the correlation measure in step 3
with and without GBA. This error is defined as the Euclidean distance
between the centroid location of the estimated corresponding region and the
center of the radiologist-identified ground-truth corresponding region on the
previous mammogram.
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TaBLE 1. Accuracy of regional registration using correlation measure and
mutual information measure in step 3 with and without global breast align-
ment (GBA) and using a 1-pixel-wide background region for the template
from the current mammogram. Correct estimates are the cases where the
estimated centroid location was within the bounding box of the radiologist-
identificd object location.

Average Average
error error
(mm) for  (mm) for
Overall average  correct incorrect
Mcthod Accuracy error (mm) estimates  estimates
Correlation  77% (57/74) 7.4+102 2.8+20 229*115
without GBA
Mutual 68% (50/74) 8.8+10.5 30x20 207=11.1
information
without GBA
Correlation  85% (63/74) 47=58 28+19 157%83
with GBA
Mutual 74% (55/74) 7.2*8.6 30+20 194*+89
information
with GBA

B. Local search criteria and final estimates

We have evaluated the use of correlation and mutual in-
formation as the local search criteria. From Table I we ob-
serve that the GBA procedure results in a higher accuracy
irrespective of the search criterion. While the use of mutual
information as a search criterion performs reasonably well by
itself (74% accuracy with an average error of 7.2 mm) the
use of correlation measure was observed to result in more
accurate registration. For the images in this data set, the cor-
relation measure outperformed the mutual information mea-
sure irrespective of whether the breast centroids were com-
puted with or without the GBA procedure.

A few observations on the 11 cases where the final esti-
mate was outside the radiologist-identified ground-truth cor-
responding region are in order. In 7 of the 11 cases although
the radiologist did provide a region corresponding to the
mass on the current mammogram, the corresponding struc-
ture on the previous mammogram was very subtle (visibility
rating 8 or higher) with indistinct boundaries. The radiologist
could only estimate the region where the mass would de-
velop rather than the mass itself, so the truth was uncertain.
In one of the remaining 4 cases, the mass was an architec-
tural distortion in the current mammogram. In a second (be-
nign) casc the mass shape had changed considerably. Upon
consultation of the pathology report, the radiologist con-
cluded that the mass was a benign cyst which had been as-
pirated in the previous year resulting in a substantial change
in its shape. In the third case, the proximity of the mass to
the chest wall resulted in it being incompletely imaged in the
previous year compared to the current year. In such cases the
correlation measure of a neighboring breast structure would
tend to be higher than that of the corresponding structure. In
the fourth case, an overlap of two vessels was identified as
corresponding to the mass on the current mammogram while
the region corresponding to the mass was observed to be
extremely subtle. In almost all of the 11 cases the proximity
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of the corresponding region to a dense structure combined
with the subtle nature of the structure on the previous mam-
mogram render the correlation measure ineffective in estab-
lishing correspondence. However, in clinical practice, these
masses will likely be categorized as a newly developed den-
sity. Criteria to distinguish a newly developed density will be
investigated in further studies.

C. GBA: Area overlap vs mutual information

For the images used in this study, the result of the GBA
procedure based on maximizing the area overlap between the
breast regions in the two images of a temporal pair is com-
parable to that based on maximizing the mutual information.
However, our observation is that the mutual information cri-
terion is preferable to the arca overlap criterion. The area
overlap measure suffers from the drawback that if the breast
region in one of the mammograms is uniformly smaller than
that in the other, i.e., the breast edge in one is completely
within the breast edge in the other, then there is no unique
rotation angle at which the area overlap is maximized. Al-
though the range of rotation angles over which local maxima
of the area overlap occur is small, the resulting estimate of
the rotation angle for GBA may be suboptimal. The use of
mutual information, however, results in a single unique rota-
tion angle at which MI is maximized. In any case, as dis-
cussed earlier, the use of the GBA procedure before comput-
ing the breast centroid results in a reduction in the size of the
search region. A smaller search region reduces the likelihood
that the mass template is matched to an incorrect structure
and, therefore, increases the accuracy and reduces the Eu-
clidean distance error.

D. Template size, scale factors, and computation
times

The size of the background region in the gray scale tem-
plate extracted from the current mammogram affects regis-
tration accuracy. For the 74 temporal pairs in this data set,
the best performance was observed when a 1-pixel-wide
background region was included all around the boundary of
the mass template. A 5-pixel-wide background region re-
sulted in a decrease in accuracy and an increase in the aver-
age Euclidean distance error. The accuracy progressively de-
creased and the Euclidean distance error increased with an
increase in the size of the background region in the template.
Figure 13 shows the distributions of the radial and angular
scale factors for the images used in this study. The radial
scale factor s, ranged from 0.94 to 1.05 for this data set. Use
of s, reduced the size of the search area by decreasing the
required value for & The angular scale factor s, was very
close to 1 in all cases and did not seem to make any major
difference for the images in this data set. On a final note the
computation time required for regional registration incorpo-
rating correlation was on the average 2 s without GBA and 4
s with GBA on a UNIX workstation (DEC AlphaStation 600
series).
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V. CONCLUSIONS ACKNOWLEDGMENTS

Radiologists are interested in determining any local
changes in breast tissue over time which may indicate a de-
veloping cancer. We have developed a novel regional regis-
tration technique for temporal registration of mammograms.
This technique could become an important component of a
CAD scheme for mammographic analysis. Unlike other tech-
niques found in the literature, our regional registration tech-
nique does not depend on the identification of landmark
structures or control points on the mammograms. It is based
on a search technique that many radiologists use and has
proven to be successful in mammographic interpretation. Af-
ter corresponding objects are found, they can be analyzed for
interval changes in a CAD scheme. Our preliminary results
indicate that the regional registration technique is promising
in identifying corresponding regions from temporal mammo-
graphic pairs. In 85% (63/74) of the cases the regional reg-
istration technique correctly identified the corresponding re-
gion in the previous mammogram. For these 63 cases, it is
highly encouraging to note that the estimated location of the
region corresponding to the mass in the current mammogram
was less than 3 mm on the average from radiologist-
identified corresponding locations.

Areas for future work include the development of an au-
tomated technique for identifying the nipple location on the
mammograms, investigation of other local search criteria
such as Fourier descriptors and shape-invariant moments to
be used in the fan-shaped search region, adaptive methods
for determining the size of the search region, criteria for
identifying newly developed densities, application of re-
gional registration to false positives as well as masses, and
studies with a large data set to investigate the robustness of
the regional registration technique. It may be noted that the
regional registration technique may also be applicable to
other related registration problems, such as the registration of
left and right mammograms.
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Classifier design is one of the key steps in the development of computer-aided diagnosis (CAD)
algorithms. A classifier is designed with case samples drawn from the patient population. Generally.
the sample size available for classifier design is limited, which introduces variance and bias into the
performance of the trained classifier, relative to that obtained with an infinite sample size. For CAD
applications, a commonly used performance index for a classifier is the area, A, , under the receiver
operating characteristic (ROC) curve. We have conducted a computer simulation study to investi-
gate the dependence of the mean performance, in terms of A,, on design sample size for a linear
discriminant and two nonlinear classifiers, the quadratic discriminant and the backpropagation
neural network (ANN). The performances of the classifiers were compared for four types of class
distributions that have specific properties: multivariate normal distributions with equal covariance
matrices and unequal means, unequal covariance matrices and unequal means, and unequal cova-
riance matrices and equal means, and a feature space where the two classes were uniformly dis-
tributed in disjoint checkerboard regions. We evaluated the performances of the classifiers in
feature spaces of dimensionality ranging from 3 to 15, and design sample sizes from 20 to 800 per
class. The dependence of the resubstitution and hold-out performance on design (training) sample
size (N,) was investigated. For multivariate normal class distributions with equal covariance ma-
trices, the linear discriminant is the optimal classifier. It was found that its A,- versus- 1/N , curves
can be closely approximated by linear dependences over the range of sample sizes studied. In the
feature spaces with unequal covariance matrices where the quadratic discriminant is optimal, the
linear discriminant is inferior to the quadratic discriminant or the ANN when the design sample size
is large. However, when the design sample is small, a relatively simple classifier, such as the linear
discriminant or an ANN with very few hidden nodes, may be preferred because performance bias
increases with the complexity of the classifier. In the regime where the classifier performance is
dominated by the 1/N, term, the performance in the limit of infinite sample size can be estimated as
the intercept (1/N,=0) of a linear regression of A, versus 1/N,. The understanding of the perfor-
mance of the classifiers under the constraint of a finite design sample size is expected to facilitate
the selection of a proper classifier for a given classification task and the design of an efficient
resampling scheme. © 1999 American Association of Physicists in Medicine.
[S0094-2405(99)00212-6]

Key words: computer-aided diagnosis, classifier design, linear classifier, quadratic classifier,
neural network, sample size, feature space dimensionality, ROC analysis

I. INTRODUCTION

With the advent of digital imaging modalities, computer-
aided diagnosis (CAD) is becoming an important area of
research in medical imaging. A CAD algorithm can detect
abnormalities and classify disease or normal cases based on
image and/or patient information, and thus provide a second
opinion to the radiologist in the detection or diagnostic deci-
sion making process.

Design of classifiers that can accurately distinguish nor-
mal and abnormal features is a critical step in the develop-
ment of CAD algorithms. It has been shown that the perfor-
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mance of a classifier for unknown cases depends on the
sample size used for training.! When a finite design (train-
ing) sample size is used, the performance is pessimistically
biased in comparison to that obtained from an infinitely large
design sample. In order to design a classifier with a perfor-
mance generalizable to the population at large, one has to use
a sufficient number of case samples that are representative of
the population. However, the availability of case samples is
often limited in medical imaging research. It is therefore im-
portant to study the sample-size dependence of different clas-
sifiers and determine the most efficient way of training a
classifier, under the constraint of a finite sample size.

© 1999 Am. Assoc. Phys. Med. 2654
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We note that the concept of generau;abxhw may be used
) . hen assessing the performance
in several technical senses W .

. . to mean classifier perfor-
of a classifier: one with respect 10 i .
: the variance of classifier
mance, the other with respect 10 : .
performance. In many classifier design problems, onefls n;os
interested in investigating if the mean performance of a clas-
sifier estimated from a given set of finite design samples can
be generalized to classification performance with unknown
test samples drawn from the same population of cases. Thg
generalizability in this regard can be ob'served. from the b}—
ases of the mean performances 1n the finite design set and m
the test set in comparison to the optimal performance esti-
mated from an infinite design set. The bias in the mean per-
formance of different classifiers under various input condi-
tions is the subject of investigation in this study. We will
discuss further other interpretation of generalizability in the
Discussion section of this paper.

A number of investigators have studied the finite-sample-
size probleml‘g Fukunaga'® derived a general formulation
for the bias and variance of a function, f, which is to be
estimated from the available samples. When f is a nonlinear
function of the mean vectors and covariance matrices of two
feature distributions, it has been shown that a bias results
from the nonlinear propagation of the finite-sample variances
in the estimates of the mean vectors and covariance matrices
of the distributions through this function. For multivariate-
normal data, these variances are proportional to 1/N,, where
N, is the design sample size, and this dependence propagates
into the lowest-order terms in the bias. The bias is indepen-
dent of the test sample size, N,.,,. All measures of classifier
performance that count the fraction of times the decision
value for an abnormal case exceeds that for a normal case
(independent of underlying distribution), and various mea-
sures of error for normally distributed decision functions, are
nonlinear functions of the parameters of the underlying dis-
tributions. They are thus subject to this effect. Fukunaga and
Hayes® analyzed the finite sample effects on the probability
of misclassification (PMC) of a classifier and suggested a
technique that makes use of the linear dependence of PMC
on 1/N, to estimate the performance at N,— with a finite
sample set.

For the evaluation of medical diagnostic systems, the
most commonly used performance index is the area under
the receiver operating characteristic (ROC) curve, A,. We
have derived analytically that, for linear discriminant classi-
fiers, the classifier performance in terms of A, can be ap-
proximated by a linear function in 1/N,, under conditions
when higher order terms in N, can be neglected. We have
been investigating the dependence of A, on sample size by
simulation studies.””> Wagner et al.'%!! have also analyzed
the effects of design and test sample sizes on the variance
components of the classifier performance. Although these
behaviors depend strongly on the class distributions and the
properties of the classifier, the studies will provide some in-
sight into the sample size requirements for the design of
different classifiers. This work may eventually lead to the
selection of an efficient resampling scheme for classifier de-
sign, as well as the development of a statistical test of the
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FiG. 1. The sampling and evaluation scheme of the simulation study.

sample size requirements and the generalizability of the
trained classifier. '

In this paper, we will describe the simulation studies and
analyze the effects of sample size on classifier performanc;.
Several commonly used classifiers, including the linear dis-
criminant, the quadratic discriminant, and the back-
propagation neural network will be studied and compaJ'Fd
under different input conditions. Feature distributions with
markedly different characteristics will be used to represent a
variety of situations that may be encountered in classification
problems for many detection or diagnostic tasks.

Il. MATERIALS AND METHODS

We performed simulation studies to evaluate the effects of
sample size on classifier design. Normal and abnormal case
samples were randomly drawn from known probability dis-
tributions of the two classes. These samples were then used
to design classifiers for differentiation of normal and abnor-
mal cases. The simulation approach assures that any number
of case samples can be obtained from populations with
known statistical properties. It thus allows evaluation of the
dependence of classifier performance on design sample size
and comparison of the performance with theoretically pre-
dicted optimal classification based on the chosen probability
distributions.

A. Simulation study

The sampling and evaluation scheme of the simulation
study is shown in Fig. 1. In this study, we considered only
the situation in which equal numbers (=N ga/2) of normal
and abnormal cases randomly drawn from the class distribu-
tions were available in our data set. A resampling strategy
similar to the technique suggested by Fukunaga and Hayes
was devised to generate the A,-vs-1/N, curve. Subsets of
NH’N'z""’N'j design samples were randomly drawn from
the available sample set, again under the constraint that the
numbers of normal and abnormal samples were equal in each
subset, i.e., N, normal = N, ,nbnommﬁN,i/Z (i=1,...5). A clas-
sifier was designed by using each subset of samples. The
random sampling of a given subset from the available set of
N1 Samples was performed without replacement, whereas

~ the random sampling of different subsets always started from
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the same set of N, samples. Therefore, after drawing a
given design subset N,, the remaining samples, Niga~N,,

were independent of the design samples and used as the test
samples. For simplicity, the number of design samples per
class 1s denoted as N in the following discussion.

In general, there are two methods, resubstitution and hold-
out, for testing classifier performance. In the resubstitution
method, the design sample set is resubstituted into the
trained classifier to test its performance, whereas in the hold-
out method, an independent test set is used. It has been
shown' that, for a Bayes classifier, if the classifier is trained
with a finite number of design samples, the resubstitution
estimate of the classifier performance is optimistically biased
whereas the hold-out estimate is pessimisticaly biased in
comparison to that achievable with an infinite design sample
set. The mean performance obtained from the former estima-
tion provides an upper bound and that from the latter pro-
vides a lower bound on the true classifier performance. When
the design sample size is limited, it is important to evaluate
the hold-out performance to avoid an overly optimistic pre-
diction of the classifier performance. In the limit of very
large sample size, the upper and lower bounds converge to-
wards the unbiased estimate.

In this study, we evaluated the performance of the classi-
fier using both the resubstitution and the hold-out methods as
a function of finite design sample size N, . In order to reduce
the variances in the estimates of A,, we randomly resampled
without replacement each N,i from the same N, samples

N, times, trained and tested the classifier, and estimated the
average A, from the N, individual A,’s as shown in Fig. 1.
The resubstitution or hold-out A,-vs- 1/N, curve was plotted
from the j points and the unbiased estimate of A, in the limit
of N,— < could be extrapolated from either curve.

This method of estimating classifier performance at large
N, by generating a few data points at finite sample sizes is
similar to the Fukunaga and Hayes technique. However, we
did not assume that the j points were in the linear region of
the A,-vs-1/N, curve and we used resampling to reduce the
variances. In fact, one of the goals of this study was to in-
vestigate the range of design sample size in which the per-
formance curve was approximately linear for various classi-
fiers and probability distributions of the class populations.
Therefore, we used a much larger total number of samples
(Nio=2000) in our simulation study than was generally
available for classifier design. We could then choose N ;, over
a wide range and study the behavior of the entire A ~Vs-1UN,
curve.

To estimate the population mean of A, at each N,, we
repeated the above experiment N, times, each with '2000
independently drawn samples from the population. The
population mean of A, was estimated by averaging the A,
values obtained from the N, experiments. We did not ana-
lyze the variances in this study because of the complication
in the correlation among the N, values of A, introduced by
resampling. A detailed analysis of the variances and its mod-
eling was performed in a separate study by Wagner et ql.'%!!
in which a different study design was used.
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By varying the number of design samples per class. A,
over a large range from 20 to 800. the regime where the /A
dependence dominated could be observed from the A. (popu-
lation mean)-vs-1/N, (or 1/N) curves. It is imporant to note
that. although the number of test samples. A‘[es:. = 2000
—N, . varied from point to point on both the resubsttutior

and the hold-out curves. the bias in A. is independent of
1\.’,‘,,51‘.l The shape of the A.-vs-1/N curve is independent of
N after N, is fixed. However. the variance of a given A.
does depend on the test sample size.

For simplicity, we will refer to these estimates of A.
(population mean) as A,(tr) for the resubstitution and as
A_.(ts) for the hold-out performance in the following discus-

sions.

B. Class distributions
1. Multivariate normal distributions

For three of the four types of class distributions, we as-
sumed that the normal and abnormal classes followed multi-
variate normal distributions in the feature space. The dimen-
sionality of the feature space, k, was varied from 3 to 15. The
characteristics of the multivariate normal distributions can be
completely specified by the multivariate mean vector of the
rth class, denoted as u, (r=1,2) and its covariance matrix,
denoted as 3., . The separation of the normal and abnormal
classes is measured by the Bhattacharyya distance, B, de-
fined as!*!2

det (2, +3,)/2]
vdet 3, Vdets, ’

where det X, denotes the determinant of 3.,, and A is the
squared Mahalanobis distance,12 defined as

3, +3,
— _ T
A=(pr—py) ( 5

1 1
= — + —
B 8A 2ln (1)

-1
(2= py). (2)

The Mahalanobis distance is the Euclidean distance between
the means of the two distributions, normalized by the square
root of the average of their covariance matrices. It can there-
fore be considered to be a measure of the signal-to-noise
ratio (SNR) between the abnormal and the normal distribu-
tions. The second term of B is the contribution from the
difference in the covariance matrices of the two class distri-
butions. If the covariance matrices are equal, the second term
will be zero and the Bhattacharyya distance will be equal to
1/8 of the squared Mahalanobis distance.

In the current study, three types of multivariate normal
class distributions were considered. In the following discus-
sion, we shall refer to the use of simultaneous diagonaliza-
tion for the two covariance matrices of the class distribu-
tions. This operation leaves the normal-based decision
functions unchanged because the distance measures that arise
in these decision functions are invariant to any non-singular
linear transformation.’

(1) Equal covariance matrices and unequal means: In
this case, the covariance matrices of the normal and abnor-
mal class distributions can be simultaneously diagonalized
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FiG. 2. A schematic illustration of the two class distributions with equal

covariance matrices and nnequal means in a 2D feature space. The circles

represent contours of equal probability in each distribution.

and the variances of the individual feature components can
be scaled to unity. Therefore, without loss of generality, the
covariance matrices of the two classes could be assumed 1o
be equal to identity matrices, 3,=2,=1. The mean feature
vector for the first class was assumed to be zero, u; =0, and
the mean feature vector for the second class, u,=M with all
components of M equal to a constant m. The magnitude of m
could be adjusted to obtain a desired separation of the two
classes. For the purpose of this simulation study, we chose m
such that the squared Mahalanobis distance was 3, 1.e., the
Bhattacharyya distance was 3/8, for feature spaces of any
dimensionality. As discussed below, this separation corre-
sponds to a theoretical A, of 0.89, which is in the perfor-
mance range of many classification problems in CAD appli-
cations. An example of the two class distributions in a 2D
feature space is shown schematically in Fig. 2.

(2) Unequal covariance matrices and unequal means:
The covariance matrix of the first class was again diagonal-
ized and scaled to be an identity matrix, %=1, and the mean
feature vector for the first class was assumed to be zero,
i, =0. The covariance matrix of the second class, 3,, was
simultaneously diagonalized to have eigenvalues \;, i
=1,...,k. For this study, we generated the values of A; with
the simple relationship:

(i = 1) (A max~ Mmin)
(k—1) ’

and evaluated one condition where A, =1, and A ,, =2 for
all dimensionalities of the feature spaces. We also assumed
that the components of the mean feature vector u, were
equal, the values of which were adjusted to achieve a Bhat-
tacharyya distance of 3/8. For the purpose of demonstrating
the general trends of the A,-vs-1/N curves and comparing
the relative performance of the different classifiers under the
various conditions, the specific choices of these values are
not critical. Figure 3 illustrates an example of the two class
distributions in a 2D feature space.

(3) Unequal covariance matrices and equal means:
The covariance matrix of the first class was the same as that
in the first two cases described above. The covariance matrix
of the second class was proportional to the identity matrix,
%.,= al, where the proportionality constant a was adjusted
to provide a Bhattacharyya distance of 3/8. The mean feature

i=1,..k 3)

)\,.: min
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f1

FiG. 3. A schematic illustration of the two class distributions with unequal
covariance matrices and unegual means in a 2D feature space. The closed
curves represent contours of equal probability in each distribution.

vectors of the two classes were equal, u; =u,=0. In this

case, the discriminatory power of the two classes COMEs en-
tirely from the difference in the covariance matrices. A sche-
matic of the two class distributions in a 2D feature space 1s
shown in Fig. 4.

2. Checkerboard distributions

The fourth type of class distributions was a checkerboard
where the normal and abnormal classes were located in al-
ternate square box regions of the feature space. Within each
box of the checkerboard, the feature vectors were uniformly
distributed. The two classes did not overlap with each other
so that they could be perfectly separated by an *‘ideal’ clas-
sifier with A,=1. We considered a 2X3 checkerboard in 2
2D feature space and a 2X2 X2 checkerboard in a 3D feature
space. The example of a 2X3 checkerboard in a 2D feature
space is shown in Fig. 5. Such class distributions may not be
common in actual classification problems encountered in
CAD. However, it was included in this study to demonstrate
the capability and limitations of the different classifiers when
the class distributions were not multivariate normal.

C. Classifiers

We studied three types of classifiers: the linear discrimi-
nants, the quadratic discriminants, and the back-propagation
neural networks. They represent a range of classifiers com-
monly used in the field of pattern recognition at present.

IV
L/

FIG. 4. A schematic illustration of the two class distributions with unequal
covariance matrices and equal means in a 2D feature space. The circles
represent contours of equal probability in each distribution.
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FIG. 5. An example of a 2X3 checkerboard in a 2D feature space.

(1) Linear discriminant classifier: The linear discrimi-
nant classifier can be derived from the means and the cova-
riance matrices of the class distributions as follows:!'13

(X)) = (=) XA K WISy~ w15 ), (@)

where 3 =(3;+3,)/2, and X is the feature vector to be
classified. The means and covariance matrices have to be
estimated as the sample means and sample covariance matri-
ces from the available design samples. The sample means
and covariance matrices undergo a nonlinear transformation
to become the discriminant scores, which in turn are trans-
formed nonlinearly into a measure of the performance. The
variances in the estimated parameters propagate into the
mean classifier performance and result in a bias through the
second derivative of the transformation function.

It is known that, for multivariate normal distributions with
equal covariance matrices, the linear discriminant classifier is
optimal and the classifier performance in the limit of large
design samples is determined by the Mahalanobis distance,
given by

AZ=

1 VAT
f e_"zlzdu. (5)
awJ-=

V2w

For the class distributions with A= 3 to be used in this study,
it can be derived from Eq. (5) that the maximum A, that the
optimal linear discriminant can achieve in the limit of large
design samples is 0.89.

(2) Quadratic discriminant classifier: The quadratic dis-
criminant classifier can be expressed as'

h (X)=l(x— s Y x -
q 2 M p ( ©y)

1 1 dets,
- —(X- T =liy _ + -
2( H2) 2 (X — ) 2]ndet22'

(6)

When the class distributions are multivariate normal with
unequal covariance matrices, the quadratic discriminant clas-
sifier is optimal in the limit of large training samples. The
Bhattacharyya distance gives an upper bound on the Bayes
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FIG. 6. A schematic diagram of a backpropagation neural network with one
hidden layer.

error.! The general properties of the linear and quadratic
classifiers have been described in the literature (for example,
Fukunaga').

(3) Back-propagation neural network: Many different
architectures and training methods have been developed for
artificial neural networks (ANN)'* in various applications. In
this study, we considered only a three-layered neural net-
work trained with a feed-forward back-propagation method.
The neural network has k input nodes, n hidden nodes. one
output node, and a bias node in both the input and the hidden
layers. The ANN architecture is denoted as k—n— 1. The
nodes in the ANN are fully connected and are trained with a
minimum sum-of-squares-error criterion. The number of
weights to be estimated is equal to n(k+1)+(n+1). A
schematic diagram of an ANN is shown in Fig. 6.

lll. RESULTS

In our simulation study, we compared the performance of
the linear, quadratic, and backpropagation neural network
classifiers for the different class distributions in the feature
spaces of dimensionality ranging from 3 to 15. The number
of repeated experiments N, was chosen to be 20 for all cases
in the multivariate normal feature spaces and 100 in the
checkerboard feature space. The number of data set partition-
ings N, in each experiment ranged from 1 to 20. These
choices are a compromise between computation time and
estimation accuracy, especially for ANN classifiers with a
large number of hidden nodes in high dimensional feature
spaces. As shown in the graphs discussed below, some of the
performance curves may exhibit fluctuations that could be
reduced by a larger number of experiments. However, the
general trend of the performance curves should not be
changed by the statistical uncertainties.

(1) Multivariate normal distributions—Equal covari-
ance matrices and unequal means: For class distributions
with equal covariance matrices, the linear discriminant is
theoretically the optimal classifier when the design sample
size is large. However, when the design sample size is small,
the performances of all classifiers are biased. Figures 7(a)-
7(c) show the dependence of the A . obtained from resubsti-
tution (training), A,(tr), and the A . Obtained from the hold-
out method (testing), A,(ts), on 1/N for the linear, ANN, and
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quadratic classifier, respectively. Two hidden nodes were
used for the ANN (k—2—1) because it is the smallest num-
ber of hidden nodes in a nonlinear ANN. An ANN with only
one hidden node will be a linear classifier and behave in a
similar manner as the linear discriminant. On the other hand,
ANNs with a large number of hidden nodes (not shown) will
overfit the design samples and have poor generalizability to
the unknown cases, similar to the ANN curves to be dis-
cussed below. All three classifiers can reach the optimal clas-
sification accuracy of A,=0.89 in the limit of large N. The
curves for the linear classifier and the ANN (k—2—1) at
400 training epochs (iterations) are approximately linear over
the entire range. The quadratic classifier does not reach the
approximately linear region until N is greater than about 100
(1/N<0.01) in the higher-dimensional feature space. The bi-
ases on both the resubstitution and hold-out curves for the
quadratic classifier are greater than those for the linear clas-
sifier and the ANN (k~2—1). The large biases again indi-
cate overfitting and poor generalization by the quadratic clas-
sifier in the equal-covariance-matrices situation.
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(2) Multivariate normal distributions—Unequal cova-
riance matrices and unequal means: The performances of
the classifiers for class distributions with unequal covariance
matrices are shown in Figs. 8(a)-8(b). The linear discrimi-
nant and the ANN (k—2-1) classifier (not shown) are
again approximately linear over the entire range of N stud-
ted. However, the A, at 1/N=0 decreases as the dimension-
ality of the feature space increases. This is because both the
linear discriminant and the near-linear ANN (k—=2-1) can-
not make use of the class separability due to the differences
in the covariance matrices which is the second term in the
Bhattacharyya distance. The second term increases relative
to the first term, the squared Mahalanobis distance, when the
Bhattacharyya distance is fixed and the dimensionality of the
feature space increases.

The performance curves of the ANN at large N improve
when a greater number of hidden nodes and a sufficient num-
ber of training epochs are used. The number of hidden nodes
required to reach the optimal classification of A :=0.89 at
1/N=0 increases with the dimensionality of the feature
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space. Figure 8(b) shows the performance of the ANNs when
the number of hidden nodes is equal to the dimensionality in
each feature space. Since the number of weights to be trained
increases rapidly with increasing number of nodes in an
ANN, the number of epochs required for training the ANN to
achieve a reasonable classification accuracy increases ac-
cordingly. The resubstitution and hold-out performance
curves of each ANN shown in Fig. 8(b) were chosen at the
smallest number of training epoch that resulted in approxi-
mately the highest A, value when the hold-out curve was
extrapolated to 1/N=0. The number of training epochs re-
quired to reach the highest A, increased as the dimensional-
ity and the number of hidden nodes in the ANN increased. It
ranged from about 4000 to 10000 for the conditions shown
in Fig. 8(b). We did not attempt to perform an exhaustive
search for the ‘‘optimal’’ number of hidden nodes in each
feature space because of the extensive computation time re-
quired for the search. Instead, we evaluated ANNs with a
few different numbers of hidden nodes in each feature space
and chose the “‘best”” ANN within those studied. With this
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approximation we observed that, in a k-dimensional feature
space and with these class distributions, an ANN with ap-
proximately k hidden nodes can approach the optimal perfor-
mance when the design sample size and the number of train-
ing epochs are sufficiently large, as shown in Fig. 8(b).

To illustrate the training of an ANN with a large number
of hidden nodes, we show the dependence of the resubstitu-
tion and the hold-out curves on the number of training ep-
ochs for ANN (9—9-1) in Fig. 9. A number of commonly
discussed problems of an ANN can be observed. In the small
N region below about 60 samples per class, over-
parametrization and over-training are obvious, i.e., near per-
fect classification during training [A,(tr) greater than 0.95]
and poor generalization [A (ts) below about 0.8]. The prob-
lem becomes more pronounced with an increasing number of
training epochs. In the middle range of 200 to 400 samples
per class where A (ts) increases to a maximum then de-
creases with further training, an *‘optimal’’ number of train-
ing epoch exists. Only in the region with a sufficiently large
N (greater than about 500 per class), A .(ts) increases with
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increasing number of training epochs within the range stud-
ied. The A,(ts)-vs-1/N curve becomes linear for N greater
than about 200. This dependence of ANN on training epoch
is generally observed for ANNs with a large number of hid-
den nodes and in high-dimensional feature spaces, although
the design sample size required in order to avoid over-
training and over-parametrization varies. It reinforces our
general experience that the ANNs with a large number of
weights can overfit the design samples easily and provide
poor generalization when the sample size is small.

The performance curves of ANNs with different numbers
of hidden nodes in the 9D feature space are shown in Fig. 10.
The curves for a given ANN were again chosen at a training
epoch in which the hold-out curve approached approximately
the highest performance at 1/N=0. The chosen training ep-
och ranged from 600 to 12 000 for the 2- to 15-hidden-node
ANNs shown. When the number of hidden nodes is small,
the highest A, obtained by extrapolation to 1/N=0 appears
to be below the theoretical optimum of 0.89. For example,

the A, extrapolated to 1/N=0 is about 0.85 for ANN (9-2
—1), and is about 0.87 for ANN (9—6—1). The ANN with
nine hidden nodes appears to approach the optimal A. of
0.89 in the limit of 1/N=0. However, the ANN (9-9-1)
does not reach the approximately linear region until N is
greater than about 200 (easier to see in Fig. 9). As can be
seen from the hold-out curves, increasing the number of hid-
den nodes further will increase overfitting, reduce generaliz-
ability, and increase train time without gaining true improve-
ment in performance for classification of unknown case
samples.

The quadratic classifier is the theoretically optimal classi-
fier for the class distributions with unequal covariance ma-
trices. It can optimally utilize the class separability contrib-
uted by both the differences in the means and the covariance
matrices. The performance curves for the quadratic classifier
(not shown) in feature spaces of different dimensionalities
are very similar to those obtained for the equal covariance
matrices situation [Fig. 7(c)]. The A, of the quadratic classi-
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fier reaches the optimal value of 0.89 in the limit of large N
for all dimensionalities studied.

Figure 11 shows a comparison of the performance of the
linear, quadratic, and the ANN classifiers with two and nine
hidden nodes. The biases on the resubstitution and the hold-
out curves of the quadratic classifier are not as large as those
of the ANN (9—9-1) classifier. However, in the regime of
small design sample sizes, the hold-out curve of the optimal
quadratic classifier can be much lower than the correspond-
ing curves of the linear classifier or ANN with one or two
hidden nodes. This result indicates that the theoretically op-
timal classifier may not be the optimal choice when the
available design sample size is small and over-
parametrization becomes an important consideration.

(3) Multivariate normal distributions—Unequal cova-
riance matrices and equal means: Figure 12(a) shows the
dependence of A, on 1/N for the linear classifiers for the
class distributions with equal means. Since the Mahalanobis
distance is zero when the means of the two class distribu-
tions are equal, the linear classifier performs no better than
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random guessing in the hold-out situation (4,(1s)=0.5).
However, it is somewhat surprising that the resubstitution
curve can be biased to very high A, values, when the design
sample is small. The bias increases with increasing dimen-
sionality of the feature space because the severity of overfit-
ting to the design samples worsens with increased parameter-
ization in the linear discriminant function. This indicates that
the predicted performance of a classifier can be unrealisti-
cally optimistic if the test samples are not independent of the
design samples.

For the class distributions with equal means, it is much
more difficult to train the ANN classifier. The number of
hidden nodes and the number of training epochs required for
the ANN to approximate the decision surfaces, which are
spherical hypersurfaces in the k-dimensional feature space,
increase as k increases. Figure 12(b) shows the A,-vs-1/N
curves for the ANNs in which the number of hidden nodes is
2 times the dimensionality of the feature space. The number
of training epochs required to approach the highest perfor-




mance for a given ANN architecture ranges from about 1800
to 20000 in these cases. Again we did not attempt an ex-
haustive search for the ‘“‘optimal’’ number of hidden nodes
in each case. These ANNs were chosen because they appear
to approach the maximum performance of A.=0.89 in the
limit of large N and their number of hidden nodes is a simple
multiple of the dimensionality. Compared to the class distri-
butions with unequal means, for a given dimensionality, the
number of hidden nodes and the number of training epochs
required for achieving the near maximum performance at
large N are greater in this equal-mean situation. Figure 13(a)
shows an example of the dependence of the performance
curves on the number of hidden nodes in the 9D feature
space. Figure 13(b) is an enlarged view of the curves in Fig.
13{a) in the range where the sample size is greater than 200
per class. The hold-out performance of ANN(9—9—1) at
1/N=0 reaches about 0.85. When the number of hidden
nodes is greater than nine, the performances of the ANNs at
1/N=0 are similar and approach the optimal A,.

‘The quadratic discriminant is again the Lheorencally opti-
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mal classifier for the class distributions with unequal covari-
ance matrices. Its performance curves (not shown) are very
similar to those plotted in Fig. 7(c), except that the extrapo-
lated A, values at 1/N =0 do not reach as high as those in the
equal covariance matrices situation. By using the approxi-
mately linear region of the A ,-vs- 1/N curve at N greater than
100, the extrapolated A, ranges from about 0.873 to 0.885
for the 3D to 15D feature spaces. In this case, it is much
more efficient to train a quadratic discriminant than the
ANN. Since the linear discriminant and ANNs with few hid-
den nodes cannot provide effective classification regardless
of the design sample size, the quadratic discriminant is ob-
viously the optimal classifier both in terms of performance
and training efficiency.

(4) Checkerboard distributions: In a feature space with
checkerboard class distributions, classification is difficult for
many classifiers because of the disjoint clusters of samples
belonging to the same class. We compared the three classi-
fiers in such a situation by two examples. Figure 14 shows
the performance curves of the three classifiers in a 2D feature
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space with a 2X3 unit checkerboard distribution. Both the
linear and the quadratic discriminants perform poorly even
for the resubstitution method where A, values are in the
range of 0.6 to 0.7. However, the ANN(2—3—1) can achieve
an A, of 0.96 (not shown) and the ANN(2—~5—1) a near-
perfect classification at a training epoch of about 1200.

In a 3D feature space with a 2X2X2 unit checkerboard
distribution, the difficulty in classification experienced by the
linear and quadratic discriminants is even more apparent.
Figure 15 shows that the hold-out curve of the linear classi-
fier is basically the same as random guessing. The hold-out
curve of the quadratic classifier is slightly higher than 0.5 at
small design sample sizes but approaches 0.5 as the design
sample increases. On the other hand, the ANN(3—3—1) can
attain a test A, of 0.9 (not shown) and the ANN(3—5—1) can
reach near-perfect classification at large design sample sizes
after about 1500 training epochs. These two examples dem-
onstrate that an ANN classifier can be superior to the linear

or quadratic classifiers for class distributions that are very
different from the idealized multivaniate normal distribu-

tions.

IV. DISCUSSION

Classifier design is an important field of research in
computer-aided diagnosis. Yet many of the issues related to
classifier design have not been explored systematically. This
simulation study is a part of our on-going investigation of the
sample size effects on classifier design.”"'"!> In this study.
we evaluated classifier performance for three multivariate
normal class distributions with specific properties: equal co-
variance matrices, unequal covariance matrices, and equal
means. These distributions are idealized but they do approxi-
mate a range of situations that may occur in real classifica-
tion problems. Since the optimal classifier and the upper
bound of classification accuracy in the limit of 1/N=0 are
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known for each of these cases, we can compare the perfor-
mances of the classifiers under each condition with the opti-
mum. In addition, a checkerboard class distribution was in-
cluded in the study. A comparison of the performances of the
different classifiers for this class distribution can illustrate
their effectiveness when the distributions are very different
from multivariate normal.

For all three classifiers, the A,(tr) obtained by resubstitu-
tion is biased optimistically while the A,(ts) obtained by
Atesting with an independent test set is biased pessimistically,
relative to the A, in the limit of N—oc, except for the situ-
ations when A, (1r) is bounded from above by perfect classi-
fication (A,=1) or when A,(1s) is bounded from below by
random guessing (A.=0.5). The magnitude of the biases
increases as the design sample size decreases and as the di-
mensionality of the feature space increases. In the cases
where a given classifier has no discriminatory power for a
given class distribution, for example, the linear discriminant
for the equal-mean or checker-board class distributions, or
the quadratic discriminant for the 3D checker-board class
distribution, the test A,(ts) remains almost constant at 0.5,
independent of the design sample size. In many cases, the
A.-vs-1/N curve cannot be approximated by a straight line
that extrapolates to the A, at 1I/N=0 until the design sample
sizes are very large, beyond the range of sample sizes that
are generally available for CAD classifier design. To esti-
mate the performance of a classifier at large N under the
constraint of a small design sample, one may use the Fuku-
naga and Hayes resampling scheme® to derive several points
along the A -vs-1/N curves in the small sample size region.
If the extrapolated resubstitution and hold-out curves do not
converge to approximately the same A, at 1/N=0, an aver-
age of the points on the two curves which correspond to the
same design sample size may be a closer estimate of A, than
cither A () or A,(ts). It may be noted that the resubstitution
and the hold-out curves are not biased symmetrically from
the A, at infinite N, the average thus obtained will only be a
rough estimate. It is also not valid in cases when the classi-
fier has no discriminatory power with A,(ts) constant at
about 0.5 or when the resubstitution curve is overly optimis-
tic with A,(tr) constant at about 1.

In any case, caution should be taken in estimating classi-
fier performance by extrapolation to 1/N=0 or by averaging
the resubstitution and hold-out performance as discussed
above. The estimated performance contains variances that
have to be estimated using further tools. One such attempt in
estimating the components of variance by a bootstrapping
resampling scheme has been studied recently by Wagner
et al.'! These estimates reveal the amount of bias and vari-
ance in the classifier performance obtained with the finite
design samples, thus allowing estimation of the sample size

_required to achieve a desired degree of generalizability,
,rather than replacing the need for a larger sample set and
further studies.

With the equal-covariance-matrix class distributions, the
linear discriminant is the optimal classifier as expected. The
biases are low and the computation is efficient. Moreover,
“since the A,-vs-1/N relationship is linear over almost the
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entire range of design sample sizes. the classifier pcrfor:
mance at very large N can be estimated from the smal
sample size performance by linear interpolation. as sug-
gested by Fukunaga and Hayes” and demonstrated previousiy
by Wagner ez al.’

With the unequal-covariance-matrices and equal-mcarn
class distributions. the linear discriminant and the b_at:k-
propagation neural network with one hidden layer are infe-
rior to the quadratic classifier when the design sample sizc is
large. The linear discriminant cannot utilize the difference in
the covariance matrices and underestimates the class separa-
bility even when an infinite number of design samples 1s
available. The ANN needs a relatively large number of hid-
den nodes and a large number of training epochs in order to
reach the optimal performance. Its hold-out performance and
the computation efficiency are both inferior to those of the
quadratic classifier. However, for the unequal-covariance-
matrices and unequal-mean case and a small design sample
size, the linear classifier or an ANN with very few hidden
nodes, e.g., n=2, provides better hold-out performance than
the more complex ANNSs or the optimal quadratic classifiers.
These results indicate that the bias on classifier performance
increases with increasing complexity (loosely related to the
number of parameters to be estimated) of the classifier. The
linear classifier contains (k+ 1) independent parameters and
the quadratic classifier contains (k+ 1)(k+2)/2 independent
parameters in their formulations. The number of weights to
be estimated for the ANN depends on the number of hidden
nodes as n(k+1)+(n+1). The number of weights in an
ANN can therefore easily exceed that of a quadratic classi-
fier, although the estimation of the mean and covariance ma-
trices for the linear and quadratic discriminants may contrib-
ute additional ‘‘complexity’’ to the classifier design. Two
observations can be made. First, when the available sample
size is small, a simple classifier will have better generaliza-
tion than a more complex classifier. Second, a complex ANN
or a quadratic classifier trained with an insufficient number
of design samples generalizes poorly, even if it is the optimal
classifier for the class distributions. It is therefore important
to select an appropriate classifier by taking into consideration
the design sample size.

A further problem in classifier design is that the true
population distributions of the classes in the feature space are
generally unknown. It was suggested that the quantile~
quantile (Q—Q) plot and the chi-square plot may be used for
investigating the normality of univariate and multivariate
sample distributions, respectively.!® However, it is still un-
known under what criteria the chi-square plot will indicate
that it is optimal to use a classifier designed under the nor-
mality assumption. For any measure of goodness-of-fit, when
the sample size is small, only the most aberrant deviations
from the normal distribution can be identified as a lack of fit
from these plots.'® Therefore, there is often no a priori
knowledge to select an ‘‘optimal” classifier or to predict
whether the observed performance is caused by the sample
size, the choice of an overly complex classifier, or by an
actual poor separation of the classes in the feature space. If
one observes poor generalization of a trained classifier in a
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truly independent test set, it will be imporiant to tsze into
consideration all these factors and redesign the classifier.

In this study, we assumed that the best features have al-
ready been determined for the classification task. In a general
classifier design problem, the best set of features usually has
10 be selected based on the available design samples. The
feature selection step will introduce additional biases to the
classifier performance. The number of features selected also
has a strong influence on the classifier design, as can be seen
from the dependence of the bias on the dimensionality of the
feature space. The investigation of this more complex situa-
tion including both the feature selection and classifier train-
ing steps is underway.17

The term generalizability is nonspecific and needs to be
qualified here. The present paper is concerned with the gen-
eralizability of the mean performance of classifiers to un-
known test samples drawn from the same population of
cases. We have shown in this paper that the mean perfor-
mance of a classifier depends on the number of samples used
to train the classifier, the architecture of the classifier, and—
for multivariate-normal data—the means and covariances of
the population distributions. Suppose in this context that a
classifier is trained on a given finite number of design
samples (patients). The mean performance of the classifier
over independent replications with the same number of de-
sign samples is generalizable to studies characterized by the
same number of design samples. In other words, the mean
resubstitution or hold-out performance is an unbiased esti-
mate for repeated sampling of independent design and test
sample sets, respectively, when the same number of design
samples is used. The classifier performance may not, how-
ever, be generalizable to studies characterized by a different
number of design samples. In particular, when a very large
and representative design sample size is used, the mean per-
formance may be very different from the mean performance
that characterizes the finite-training-sample condition. When
the mean performance under the conditions of a finite design
sample size is close to that expected with a very large design
sample size, the finite-training sample performance is said to
be generalizable to the population performance.

The term generalizability is not only used with respect to
mean performance, it is also used with respect to uncertainty
in performance, as reflected in estimates of error bars (stan-
dard deviations, or the corresponding variances). For ex-
ample, if we think of repeating a given training and testing
experiment on a classifier and if only the test samples are
drawn independently on the repeated trials, then the esti-
mated uncertainties are said to be generalizable only to a
population of test samples. If, however, we think of repeat-
ing the experiment and independently drawing new training
samples as well as new test samples, then the estimated
uncertainties are said to be generalizable to a population of
trainers and a population of testers.!” Models for the com-
ponents of variance in both paradigms are the subjects
of current work in progress.!®!! A key point of this latter
work is the fact that for computer-aided diagnosis, most
available software for ROC analysis only provides estimates
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of uncertainty that are generalizable to a populauon of lest
samples.

In this investigation. we have limited our study to only
three types of classifiers: the linear disciminant. the qua-
dratic discriminant. and the backpropagation ANNs with onc
hidden layer. There are. of course. many other vanauons o
the ANN architecture and other parametric or non-parametric
classifiers available for feature classificauon tasks. The pur-
pose of our work is not to exhaustively evaluate all possible
combinations of class distributions and classifiers. Rather. by
limiting our investigation to some well-known sitations. we
can perform systematic analyses and gain some insights nto
the classifier design problems. Furthermore. we have limited
our discussion here to the estimates of the mean classifier
performance. Wagner et al'®!! have investigated the vari-
ances of classifier performance estimated from a finite
sample set and developed models to study the relative 1m-
portance of the sizes of the training and test samples. It has
been demonstrated that a components-of-variance model can
be estimated with a finite sample set by using a bootstrap
method. More importantly, the analysis of variances can re-
veal the generalizability of the performance estimates to
other training and test sample sets in the population. Our
long term goals are to find some guidelines for designing
efficient resampling schemes that can minimize the bias and
variance of a trained classifier using the available samples.
and to provide a quantitative design tool that can estimate the
design sample size requirement for a larger *‘pivotal’’ study
from the results of a smaller ‘‘pilot’” study in order to
achieve a desired precision in A, and the desired generaliz-
ability.
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Classification of Malignant and Benign Masses
Based on Hybrid ART2LLDA Approach
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Heang-Ping Chan, Nicholas Petrick, Member, IEEE, and Mark Helvie

Abstract—A new type of classifier combining an unsupervised
and a supervised model was designed and applied to classifi-
cation of malignant and benign masses on mammograms. The
unsupervised model was based on an adaptive resonance theory
(ART2) network which clustered the masses into a number of
separate classes. The classes were divided into two types: one
containing only malignant masses and the other containing a mix
of malignant and benign masses. The masses from the malignant
classes were classified by ART2. The masses from the mixed
classes were input to a supervised linear discriminant classifier
(LDA). In this way, some malignant masses were separated
and classified by ART2 and the less distinguishable benign and
malignant masses were classified by LDA. For the evaluation of
classifier performance, 348 regions of interest (ROI’s) containing
biopsy proven masses (169 benign and 179 malignant) were used.
Ten different partitions of training and test groups were randomly
generated using an average of 73% of ROI’s for training and
27% for testing. Classifier design, including feature selection and
weight optimization, was performed with the training group.
The test group was kept independent of the training group. The
performance of the hybrid classifier was compared to that of
an LDA classifier alone and a backpropagation neural network
(BPN). Receiver operating characteristics (ROC) analysis was
used to evaluate the accuracy of the classifiers. The average area
under the ROC curve (4.) for the hybrid classifier was 0.81 as
compared to 0.78 for the LDA and 0.80 for the BPN. The partial
areas above a true positive fraction of 0.9 were 0.34, 0.27 and
0.31 for the hybrid, the LDA and the BPN classifier, respectively.
These results indicate that the hybrid classifier is a promising
approach for improving the accuracy of classification in CAD
applications.

Index Terms— Computer-aided diagnosis, hybrid classifier,
mammography, neural networks.

I. INTRODUCTION

AMMOGRAPHY is the most effective method for
detection of early breast cancer [1]. However, the
specificity for classification of malignant and benign lesions
from mammographic images is relatively low. Clinical studies
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have shown that the positive predictive value (i.e., ratio of the
number of breast cancers found to the total number of biopsies)
is only 15% to 30% [2]-[4]. It is important to increase the
positive predictive value without reducing the sensitivity of
breast cancer detection. Computer-aided diagnosis (CAD) has
the potential to increase the diagnostic accuracy by reducing
the false-negative rate while increasing the positive predictive
values of mammographic abnormalities.

Classifier design is an important step in the development
of a CAD system. A classifier has to be able to merge
the available input feature information and make a correct
evaluation. Commonly used classifiers for CAD include linear
discriminants (LDA) [5], [6] and backpropagation neural net-
works (BPN) [7]-[9] which have been shown to perform well
in lesion classification problems [10]-[22]. These classifiers
are generally designed by supervised training. However, these
types of classifiers have limitations dealing with the nonlin-
earities in the data (in case of LDA) and in generalizability
when a limited number of training samples are available
(especially BPN). Another classification approach is based on
unsupervised classifiers, which cluster the data into different
classes based on the similarities in the properties of the input
feature vectors. Therefore, unsupervised classifiers can be used
to analyze the similarities within the data. However, it is
difficult to use them as a discriminatory classifier [29], [30].
They also have limited generalizability when the training
sample set is small.

We propose here a hybrid unsupervised/supervised struc-
ture to improve classification performance. The design of
this structure was inspired by neural information processing
principles such as self organization, decentralization and gen-
eralization. It combines the adaptive resonance theory network
(ART2) [26], [27] and the LDA classifier as a cascade system
(ART2LDA). The self-organizing unsupervised ART2 network
automatically decomposes the mnput samples into classes with
different properties. The ART2 network has been found to
perform better compared to conventional clustering techniques
in terms of learning speed and discriminatory resolution for the
detection of rare events in many classification tasks [28]-[30].
The supervised LDA then classifies the samples belonging to
a subset of classes that have greater similarities. By improving
the homogeneity of the samples, the classifier designed for the
subset of classes may be more robust.

The ART2LDA design implements both structural and data
decomposition. Decomposition is a powerful approach that can
reduce the complexity of a problem. Both structural decom-
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position and data decomposition can improve classification
accuracy [23] as well as model accuracy [24]. However,
decomposition can also reduce the prediction accuracy due to
overfitting the training data. We will demonstrate in this paper
that the proposed hybrid structure can reduce the overfitting
problem and improve the prediction capabilities of the system.
The performance of the hybrid ART2LDA classifier will be
compared with those of an LDA alone or a BPN classifier.
The rest of the paper is organized as follows. In Section I
the ART2 unsupervised network is described. A hybrid
ART2LDA classifier is introduced in Section III. Section IV
describes the data set used in this study. The results are
presented in Section V. Section VI contains discussion of
" these results. Finally, Section VII concludes this investigation.

II. ART?2 UNSUPERVISED NEURAL NETWORK

The ART2 is a self-organizing system that can simulate
human pattern recognition. ART2 was first described by Gross-
berg [25] and a series of further improvements were carried
out by Carpenter, Grossberg, and coworkers [26]-[28]. The
ART? network clusters the data into different classes based on
the properties of the input feature vectors. The members within
a class have similar properties. The process of ART2 network
learning is a balance between the plasticity and stability
dilemma. Plasticity is the ability of the system to discover
and remember important new feature patterns. Stability is
the ability of the system to remain unchanged when already
known feature patterns with noise are input to the system. The
balance between plasticity and stability for the ART?2 training
algorithm allows fast learning [28], i.e., rare events can be
memorized with a small number of training iterations without
forgetting previous events. The more conventional training
algorithms, such as back propagation [7]-[9], perform slow
learning, i.e., they tend to average over occurrences of similar
events and require many training iterations.

The structure of the ART2 system is shown in Fig. L. Tt
consists of two parts: the ART2 network and the learning stage.
Suppose that there are n input features z; (1 = 1,---,n) and k
classes in the ART?2 network. When a new vector is presented
to the input of the ART2 network, an activation value p; for
class j is calculated as

n

pj = 5 TiWij,

i1=1

j=1- ok )

where w;; is the connection weight between input ¢ and class
J. The activation value is a measure of the membership of the
particular input feature vector to class j. The higher the value
p; is, the better the input vector matches class 7. The maximum
value p,. is selected from all p; (j = 1,---, %) to find the best
class match. Furthermore, in order to balance the contribution
to the activation value from all feature components, the input
teature values applied to the ART2 system are scaled between
zero and one [30]. This normalization will allow detection of
similar feature patterns even when the magnitudes of the input
feature components are very different.

. The learning stage of the ART2 system can influence the
weights of the selected class or the complete ART2 network
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Fig. 1. Structure of the ART2 network.

structure by adding a new class. An additional parameter, the
vigilance, is used to determine the type of learning [26]. The
vigilance parameter pyi, is a threshold value that is compared
to the maximum activation value p,. If p, is larger than p.,
then the input vector is considered to belong to class ». The
adaptation of the weights connected with class r is performed
as follows:

new __ . old
ir = Wi,

w gld)

+ n(z; — w fori=1,---,n (2)

?

where 7 is a learning rate. The adaptation of the class » weights
(2), aims at maximization of the p, value for the particular
input vector. In an iterative manner the weights are adjusted
so that the activation values produced for similar input vectors
will be maximum only for the class to which they belong and
these maximum activation values will be higher than p;,.

If the maximum activation value p, is smaller than pyg, it is
an indication that a novelty has appeared and a new class will
be added to the ART?2 structure. The new weights connecting
the input with the new class (k + 1) are initialized with the
scaled input feature values of this novelty. In such a way, the
activation value py+; will be maximum (p, = piy1) higher
than p.j; when computed for this novelty in further training
iterations. The value of the vigilance parameter p.; determines
the resolution of ART2. It can be chosen in the range between
zero and one. In the case that p.ig is relatively small, only
very different input feature vectors will be distinguished and
separated in different classes. If pyig is relatively large, the
input feature vectors that are more similar will be separated
into different classes. The value of pyi, is selected differently
depending on the particular application.

III. ART2LDA CLASSIFIER

Despite the good performance of ART?2 for efficient clus-
tering and detection of novelties, the fast learning approach
can cause problems associated with the generalization capa-
bility of the system and the correct classification of unknown
cases. Supervised classifiers such as linear discriminants or
backpropagation neural network classifiers can have better
generalization capability than ART?2, because they are trained
by averaging over similar event occurrences. However, the
learning process in these traditional leaming algorithms tends
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to erase the memory of previous expert knowledge when a new
type of expertise is being learned. Therefore, these classifiers
do not have as good an ability to correctly classify rare events
as ART2 [28], [29].

In order to improve the accuracy and generalization of a
classifier, we propose to design a hybrid classifier that com-
bines the unsupervised ART2 network and a supervised LDA
classifier. This hybrid classifier (ART2LDA) utilizes the good
resolution capability of ART2 and the good generalization
capability of LDA. The ART?2 first analyzes the similarity of
the sample population and identifies a subpopulation that may
be separated from the main population. This will improve the
performance of the second-stage LDA if the subpopulation
causes the sample population to deviate from multivariate
normal distributions for which LDA is an optimal classifier.
Therefore, the ART2 serves as a screening tool to improve
the homogeneity of the sample distributions by classifying
outlying samples into separate classes.

The ART2LDA hybrid classifier can be described as

yar = g(f2(2)) fu(z) +1 - g(fa(2)) 3

where x is the input vector, f1(-) is the LDA classifier, fo(-) is
the ART? classifier, and g(-) is a binary membership function,
which labels the classes identified by ART2 to be one of the
two types: malignant class or mixed class. A particular class
is defined as malignant if it contains only malignant members.
It is defined as mixed if it contains both malignant and benign
members. The membership function is defined as follows:

0,
L

The type of a given class is determined based on ART2
classification of the training data set.

The structure of the ART2LDA classifier is shown in Fig. 2.
The ART? classifies the input sample z into either a malignant
or a mixed class. Depending on the class type the function
g(-) determines whether the LDA classifier will be used.
If  is classified into a mixed class, the final classification
will be obtained based on the LDA classifier. However, if
z is classified by ART2 into a malignant class, then the
mass will be considered malignant, without using the LDA
classifier. Therefore, in the ART2LDA structure, the ART2
is used both as a classifier and a supervisor. This can be
seen in (3). The first term in (3), g{f2(z)) f1(z), is the LDA
classifier multiplied by the ART2 control part g(f2(x)). The
second term in (3), (1 — g(f2(z))), gives the classification
result of the ART?2 stage. If fo(x) is a malignant class, then
9(f2(z)) = 0, the LDA stage is eliminated, and the classifier
output 7,47, is equal to 1. On the other hand, if f»(z) is a
mixed class, then g{ f2(z)) = 1, the ART?2 term is eliminated,
and the final classification is determined by the LDA classifier

(yar = filx)).

if ¢ is a malignant class
if ¢ is a mixed class.

g(e) = )

IV. METHODS

A. Data Set

The mammograms used in this study were randomly se-
lected from the files of patients who had undergone biopsies

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 12, DECEMBER 1999

Is x classified to be
1n a malignant clasy

A\
yar= J,()

Fig. 2. Structure of the ART2LDA classifier.

at the University of Michigan. The criterion for inclusion
of a mammogram in the data set was that the mammogram
contained a biopsy-proven mass. The data set contained 348
mammograms with a mixture of benign (n = 169) and
malignant (n = 179) masses. On each mammogram, a region
of interest (ROI) containing the mass was identified by a
radiologist experienced in breast imaging. The visibility of
the masses was rated by the radiologist on a scale of 1 to 10,
where the rating of 1 corresponds to the most visible category.
The distributions of the visibility rating for both the malignant
and benign masses are shown in Fig. 3. The visibility ranged
from subtle to obvious for both types of masses. It can be
observed that the benign masses tend to be more obvious than
the malignant ones. Additionally the likelihood of malignancy
for each mass was estimated based on its mammographic
appearance. The radiologist rated the likelihood of malignancy
on a scale of 1 to 10, where 1 indicated a mass with the most
benign appearance. The distribution of the malignancy rating
of the masses is shown in Fig. 4.

The data set can be considered as representative of the
patient population that is sent for biopsy under current clinical
criteria. Some characteristics of many malignant and benign
masses can be visually distinguished by radiologists. However,
there is also a nonnegligible fraction of malignant masses that
are very similar to benign masses (the low malignancy rating
region in Fig. 4). The estimated likelihood of malignancy of
malignant and benign masses that are sent for biopsy basically
overlaps over the entire range. This is consistent with the fact
that in order not to miss malignant masses radiologists must
recommend biopsy for even very low suspicion lesions.

Three hundred and five of the mammograms were digitized
with a LUMISYS DIS-1000 laser scanner at a pixel resolution
of 100 pm x 100 pm and 4096 gray levels. The digitizer
was calibrated so that gray level values were linearly and
inversely proportional to the optical density (OD) within the
range of 0.1 to 2.8 OD units, with a slope of —0.001 OD/pixel
value. Outside this range, the slope of the calibration curve
decreased gradually. The OD range of the digitizer was 0
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Fig. 4. The distribution of the malignancy ranking of the masses in the
dataset. The ranking was performed by an experienced breast radiologist (1:
very likely benign, 10: very likely malignant).

to 3.5. The remaining 43 mammograms were digitized with
a LUMISCAN 85 laser scanner at a pixel resolution of 50
psmox 50 pm and 4096 gray levels. The digitizer was
calibrated so that gray level values were linearly and inversely
proportional to the OD within the range of 0 to 4 OD units,
with a slope of —0.001 OD/pixel value. In order to process the
mammograms digitized with these two different digitizers, the
images digitized with LUMISCAN 85 digitizer were averaged
with a 2 x 2 box filter and subsampled by a factor of two,
resulting in 100 pm images.

In order to validate the prediction abilities of the classifier,
the data set was partitioned randomly into training and test
subsets on a 3:1 ratio, under the constraints that both the
malignant and the benign samples were split with the 3:1 ratio
and that the images from the same patient were grouped into
the same (training or test) subset. These constraints caused
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the subsets to deviate from an exact 3:1 ratio. The data set
was repartitioned randomly ten times. On average, 73% of the
samples were grouped into the training set and 27% into the
test set. The training and test results from the ten partitions
were averaged to reduce their variability.

B. Feature Extraction

A rectangular ROI was defined to include the radiologist-
identified mass with an additional surrounding breast tissue
region of at least 40 pixels wide from any point of the rhass
border. A fully automated method was then used for segmen-
tation of the mass from the breast tissue background within
the ROI. The rubber band straightening transform (RBST) was
previously developed [12] to map a band of pixels surrounding
the mass onto the Cartesian plane (a rectangular region). In the
transformed image, the border of mass appears approximately
as a horizontal edge and spiculations appear approximately
as vertical lines. The transformation of the radially oriented
textures surrounding the mass margin to a more uniform
orientation facilitates the extraction of texture features.

The texture features used in this study were calculated from
spatial gray-level dependence (SGLD) matrices [10]-[12],
[31], and run-length statistics (RLS) matrices [32] computed
from the RBST images. The (¢, j)th element of the SGLD
matrix is the joint probability that gray levels ¢ and j occur in
a direction at a distance of & pixels apart in an image. Based
on our previous studies [10], a bit depth of eight was used in
the SGLD matrix construction, i.e., the four least significant
bits of the 12-bit pixel values were discarded. Thirteen texture
measures, including correlation, energy, difference entropy, in-
verse difference moment, entropy, sum average, sum entropy,
inertia, sum variance, difference average, difference variance,
and two types of information measure of correlation were used.
These measures were extracted from each SGLD matrix at
ten different pixel pair distances (d = 1,2, 3,4, 6,8,10,12, 16
and 20) and in four directions (0°, 45°, 90°, and 135°).
Therefore, a total of 520 SGLD features were calculated
for each image. The definitions of the texture measures are
given in the literature [10]-[12], [31]. These features contain
information about image characteristics such as homogeneity,
contrast, and the complexity of the image.

RLS texture features were extracted from the vertical and
horizontal gradient magnitude images, which were obtained
by filtering the RBST image with horizontally or vertically
oriented Sobel filters and computing the absolute gradient
value of the filtered image. A gray level run is a set of
consecutive, collinear pixels in a given direction which have
the same gray level value. The run length is the number of
pixels in a run [32]. The RLS matrix describes the run length
statistics for each gray level in the image. The (4, 7)th element
of the RLS matrix is the number of times that the gray level ¢
in the image possesses a run length of j in a given direction.
In our previous study, it was found experimentally that a bit
depth of five in the RLS matrix computation could provide
good texture characteristics [12].

Five texture measures, namely, short run emphasis, long run
emphasis, gray level nonuniformity, run length nonuniformity,
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and run percentage were extracted from the vertical and
horizontal gradient images in two directions, # = 0° and 8§ =
90°. Therefore, a total of 20 RLS features were calculated for
each ROL The formal definition of the RLS feature measures
can be found in [32].

A total of 540 features (520 SGLD and 20 RLS) were

therefore extracted from each ROI.

C. Fearure Selection

In order to reduce the number of the features and to obtain
the best feature set to design a good classifier, feature selection
with stepwise linear discriminant analysis [33] was applied.
At each step of the stepwise selection procedure one feature
is entered or removed from the feature pool by analyzing
its effect on the selection criterion. In this study, the Wilks’
lambda (the ratio of within-group sum of squares to the total
sum of squares [34]) was used as a selection criterion. The
optimization procedure used a threshold Fj, for feature entry
and a threshold F,, for feature removal. On a feature entry
step, the features not yet selected are entered into the selected
feature pool one at a time, the significance of the change in the
Wilks’ lambda caused by this feature is estimated based on F'
statistics. The feature with the highest significance is entered
into the feature pool if its significance is higher than fj,. On
a feature removal step, the features which have already been
selected are analyzed one at a time from the selected feature
pool and the significance of the change in the Wilks’ lambda
is estimated. The feature with the least significance is removed
from the selected feature pool if the significance is less than
Fo,.. Since the appropriate values of Fj, and F,,, are not
known a priori, we examined a range of i, and [y, values
and chose the appropriate thresholds in such a way that a
minimum number of features were selected to achieve a high
accuracy of classification by LDA for the training sets. More
details about the stepwise linear discriminant analysis and its
application to CAD can be found in [10]-[12].

D. Performance Analysis

To evaluate the classifier performance, the training and
test discriminant scores were analyzed using receiver operat-
ing characteristic (ROC) methodology [35]. The discriminant
scores of the malignant and benign masses were used as
decision variables in the LABROC! program [36], which
fit a binormal ROC curve based on maximum likelihood
estimation. The classification accuracy was evaluated as the
area under the ROC curve, A.. For the ART2LDA classifier,
the discriminant scores of all case samples classified in the two
stages are combined. All masses classified into the malignant
group by the ART?2 stage were assigned a constant positive
discriminant score higher than or equal to the most malignant
discriminant score obtained from the LDA stage .

The performance of ART2LDA was also assessed by esti-
mation of the partial area index (A(;O'g)) and compared with
the corresponding performance index of the LDA and BPN
classifiers. The partial area index (AEP'Q)) is defined as the area
that lies under the ROC curve but above a sensitivity threshold
of 0.9 (TPFy = 0.9) normalized to the total area above TPFy,
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TABLE 1
NUMBER OF SELECTED FEATURES FOR THE TEN DATA GROUPS
WITH THE CORRESPONDING Fin AND FyyT PARAMETERS

Data Group | Number of
No. selected F. Fout
_ fcaturcs
1 12 1.8 1.6
2 15 2.4 2.2
3 13 2.4 2.2
4 18 2.4 2.2
5 14 2.4 2.2
6 14 2.1 1.8
7 13 ? 2.4 2.2
8 18 ? i.8 1.6
9 14 2.4 2.2
10 14 2.4 2.2

(1-TPFy). The partial A(:O‘g) indicates the performance of the
classifier in the high-sensitivity (Jlow false negative) region
which is most important for clinical cancer detection task. In
addition, the performance of the LDA stage of the ART2LDA
classifier was evaluated by the estimation of the area under
the ROC curve, denoted as A, (LDA), for the case samples
passed onto the LDA classifier.

V. RESULTS

In this section the ART2LDA classification results for
malignant and benign masses will be presented and compared
with those of the LDA or BPN classifiers. The important
point in this study is the fact that the test subset is truly
independent of the training subset. Only the training subset
is used for feature selection and classifier training, and only
the test subset is used for classifier validation. In order to
validate the prediction abilities of the classifier, ten different
partitions of the training and test sets were used. A different
ART2LDA classifier was trained using each training set and
the corresponding set of selected features. The classification
result was estimated as the average performance for the ten
partitions.

For a given partition of training and test sets, feature
selection was performed based on the training set alone. The
feature selection results for the ten different training groups are
shown in Table 1. The average number of selected features was
14. An average of two RLS features and twelve SGLD features
were selected for each of the training sets which represented
10% of all RLS features and 2.3% of all SGLD features,
respectively. Both types of features (RLS and SGLD) are
necessary in order to obtain good classification. The most often
selected RLS features for the ten training sets were: horizontal
short run emphasis (four times), horizontal long run emphasis
(six times), vertical run length nonuniformity (three times),
horizontal run length nonuniformity (three times). The most
often selected SGLD texture measures for the ten training sets
were: inverse difference moment (eight times), information
measure of correlations one and two (19 times), difference
average (nine times), and correlation (ten times). For a given
texture measure, features at different angles or distances may
be selected, but these features are usually highly correlated so




HADIJIISKI et al.. CLASSIFICATION OF MALIGNANT AND BENIGN MASSES

—+— ART2LDA (i)
a- ART2LDA (is)
—e— LDA (Ir)
o- LDA (ts)

——— LDA stage (tr)
—— LDA stage (ts)

—_
o

Mtatnt S T Rttt SN T e R G Bk SRS S e e e Mt i

o
©

o
[

LI S S N S B

06

a.. 7 aac\-
L e C B o\

100 200 250

L T N S S

0 50
Number of Classes

Fig. 5. ART2LDA and LDA classification results for training and test sets
from data group three as a function of the generated number of classes.
Additionally the results for the LDA stage from the ART2LDA classifier
are plotted.

150

that they can be considered to be similar and counted together
as described above.

A. ART2LDA Classification Results

For the ART2LDA classifier, the number of selected features
determines the dimensionality of the input vector of the ART2
classifier and the dimensionality of the LDA classifier. By
applying different values for the vigilance parameter, ART2
classifiers with different number of classes were obtained. In
this study, the vigilance parameter p,i; was varied from 0.9
to 0.99, resulting in a range of 10 to 240 classes. The overall
performance of the ART2LDA classifier was evaluated for
different numbers of ART2 classes because different subset
of the samples were separated and classified by ART2 when
Dvig Was varied. In Fig. 5, the classification results for the
ART2LDA are compared to the results from LDA alone for
the training and test set partition three. The classification
accuracy, A, was plotted as a function of the number of
ART?2 classes. For this training and test set partition, when
the number of classes was between 20 and 60, the ART2LDA
classifier improved the classification accuracy for the test set
in comparison to LDA. As the number of classes increased to
greater than 60, the A, value increased for the training data
set, but decreased for the test data set and was lower than that
of the LDA alone. The two solid lines in Fig. 5 show the A,
values for the LDA stage in the ART2LDA classifier for both
the training and test sets. It can be observed that the test A.
for the LDA stage is higher than the 4, for the LDA classifier
alone, but not as high as 4. obtained by ART2LDA when the
number of classes is small.

In Fig. 6 the classification results of LDA and ART2LDA
for the partition one training and test sets are shown. In this
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Fig. 6. ART2LDA and LDA classification results for training and test sets
from data group one as a function of the generated number of classes.
Additionally the resuits for the LDA stage from the ART2LDA classifier
are plotted.

case it appeared that in the test set there were two large
malignant outliers which degraded the LDA performance.
Only 15 classes at the ART2 stage in the ART2LDA was
enough to cluster the outliers into a separate malignant class
and to improve the performance ot the LDA stage and the
overall result. The rest of the outliers required more ART2
classes before they were clustered into separate classes and
correctly classified as malignant. This is the reason for the
similar behavior of the classifiers for partitions three and one
in the range of 40 to 70 classes as seen in Figs. 5 and 6.
When the number of classes was less than 70, the test A, for
the LDA stage (A,(LDA)) was higher than the L.LDA alone, but
not as high as the A, for ART2LDA with less than 30 classes
(Fig. 6). The best A, values for the test data sets of the ten
training and test partitions are presented in Table II and Fig. 7.
The ART2LDA classifier achieved higher A. values than the
LDA alone in nine of the ten partitions. The average A. is
0.81 for ART2LDA and 0.78 for LDA alone. The standard
deviations of the A, values for the ten groups range from
0.03 to 0.05 for the ART2LDA classifier and from 0.04 to
0.05 for the LDA classifier.

The performance of ART2LDA was also assessed by esti-
mation of the partial area under the ROC curve AP gt a
TPF higher than 0.9. The results are presented in Table III
and Fig. 7. In the lower part of Fig. 7, the A(ZO'O) values of the
test set for the corresponding ten partitions of training and test
sets are presented. The average test AL Value is 0.34 for the
ART2LDA and 0.27 for LDA. For nine of the ten partitions,
the ALY value was improved at the high-sensitivity operating
region (TPF > 0.9) of the ROC curve.

The classifier performance was also evaluated when the
ART2LDA classifiers were designed using a fixed number
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TABLE II
CLASSIFIERS PERFORMANCE FOR THE TEN TEST SETS. THE A:
VALUES REPRESENT THE TOTAL AREA UNDER ROC CURVE
Data Group  LDA | ART2LDA |~ BPN ARTZLDA(1)
VO + Prgses
1 | 077 ¢ 083 083 0.80
2 07 0.80 0.82 0.77
3 0.74 0.73 0.77 0.78
4 0.77 0.77 0.75 0.77
S 0.77 0.78 0.76 0.77
) 0.50 0.83 0.82 0.81
7 0.50 0.81 0.82 077
R 0.77 0.80 0.74 075
) 037 - __ 08 081 _ 0.80_
W |08 | 08 0.84 0.89
Mewn [ _078 | _081 080 _ | 079 __
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Fig. 7. Average A: classification results for the 10 test sets. The top graphs

represent the ART2LDA and LDA A. values for the total area under the
ROC curve. The bottom graphs represent the ART2LDA, ART2LDA(1) and
LDA A4 values for the partial area of the ROC curve above the true positive
fraction of 0.9.

TABLE III
CLASSIFIERS RESULTS FOR THE TEN TEST SETS. THE A:
VALUES REPRESENT THE PARTIAL AREA OF THE ROC CURVE
ABOVE THE TRUE POSITIVE FRACTION OF 0.9 (AEU') )

Data Group [ 1.DA | ART2LDA BPN ART2LDA(T)
__No.

! 013 0.23 031 0.26

2 0.17 0.21 028 _ 027

3 0.19 0.32 0.27 032 _

3 0.19 0.21 0.19 0.2

5 024 0.26 o 0.24

0 - _0.27 0.38 0.27 044
7 0.32 0.3t 0.38 0.30
~ o8 0.32 034 0.25 038
Ty 0.40 0.49 0.40 D)

R _0.60 0.38 0.60
__Mcan 0.27 | 034 031 .35

of ART?2 classes. The A, and _499) results, averaged over
the ten test partitions, are presented in Table IV. The average
A. with the ART2LDA classifier, compared to that of LDA
alone, was again improved between 15 and 40 classes. The
maximum average A. of 0.80 was achieved between 20 and
40 classes. The average AL results are improved for all
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o gTABLE v
AVERAGE A AND AVERAGE -1( 2) CLASSIFICATION RESULTS FOR THE TEN TEST
SETS. CLASSIFIERS WERE DESIGNED USING A FIXED NUMBER OF ART2 CLASSES

LDA ART2LDA
No. of classes | 15 20 30 40 50 60
A, 078 | 080 | 080 | 080 | 080 | 0.78 | 077
Al 027 | 030 | 031 | 033 | 033 | 031 | 031

ART2LDA classifiers presented in Table IV. The maximum
average Aﬁ‘”’ value is 0.33 and it remains constant between
30 and 40 classes.

An alternative way to evaluate the performance of a classi-
fier is its classification accuracy when a decision threshold for
malignancy is selected based on the training set. For instance,
a decision threshold may be selected such that all positive
samples from the training set are classified correctly i.e., at a
sensitivity of 100%. The ART2LDA with this decision thresh-
old is referred to as ART2LDA(1). For a given training and
test partitioning, ART2LDA classifiers with different number
of classes in the ART?2 stage were obtained (Figs. 5 and 6). For
each of these models the decision threshold for a sensitivity of
100% was selected from the training set and the corresponding
ART2LDA(1) classifier was obtained. Then the ART2LDA(1)
classifier (with a specific number of classes in the ART?2 stage)
that correctly classified the maximum number of malignant
masses in the test set is selected. By using all samples of
the test set, the A, value is calculated for the corresponding
ART2I.DA model. The A. values for the ART2LDA(1) classi-
fiers for the test sets of the ten data partitionings are shown in
Tables II and I1. For five of the partitions the overall A, value
for ART2LDA(]) is higher than that of LDA alone (Table II).
The average 4, value was 0.79. The partial areas above the
TP fraction of 0.9, A(zo.g)’ for the ten test data sets obtained
by the ART2LDA(1) classifier are also shown in Fig. 7. The
ART2LDA(L) achieved the highest average A(zo.s) value of
0.35 compared to ART2LDA and LDA (Table III).

B. BPN Classification Results

A multilayer perceptron back-propagation neural network
with a single hidden layer and a single output node was used
for comparison with the ART2LDA classifier. The number
of selected features determined the number of input nodes to
the BPN. The same ten training/test set partitions (as in the
case of ART2LDA) were used for the training and validation
of the BPN classifiers. BPN’s with their number of hidden
nodes ranging from two to ten were evaluated to obtain the
best architecture. Back-propagation training was used. Each
of the BPN’s was trained for up to 18000 training epochs.
At every 1000 epochs the neural network weights were saved
and the classification result for the corresponding test set was
evaluated. This design procedure was repeated for each of the
ten training/test groups. For each group, the best test result
among all the BPN architectures (different number of hidden
nodes) and all the training epochs examined was selected.
The average test A. over the ten groups for the BPN was
0.80, compared to 0.81 for ART2LDA (Table II). The standard
deviations of the A. values for the ten groups range from 0.04
to 0.05 for the BPN. The average partial ALY for the BPN
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was 0.31, compared to 0.34 for ART2LDA (Table III). The
A, and Agm) of the ART2L.DA classifier were higher than
those of the BPN in six of the ten training/test groups.

VI. DISCUSSION

In the present study, a new classifier (ART2LDA) was
designed and applied to the classification of malignant and
benign masses. The results indicated that the ART2LDA
classifier had better generalizability than an LDA classifier
alone. The ART? classifier grouped the case samples that were
different from the main population into separate classes. The
minimum number of classes needed to start the clustering of
outliers into separate classes depended on how different the
outliers were from the rest of the sample population. For the
ten different partitions of training and test sets used in this
study, the minimum number varied between 13 and 15 classes.
When the number of ART?2 classes was less than this minimum
number of classes, the ART2 classifier generated only mixed
malignant-benign classes and all samples were transferred to
the LDA stage. In that case, the ART2LDA was equivalent
to the LDA classifier alone. When a higher number of classes
were generated, an increased number of cases that might be
considered outliers of the general data population was removed
(clustered in separate classes). For the ten training sets used
in this study, the malignant outliers were gradually removed
when the number of classes increased. The training accuracy
increased when the number of classes increased and A could
reach the value of 1.0. However, a large number of ART2
classes led to overfitting the training sample set and poor
generalization in the test set. The classification accuracy of
ART? for the test set tended to decrease when the number of
classes was greater than about 70. The large number of classes
also led to a reduction in the generalizability of the second-
stage LDA; the training of LDA with a small number of
samples would again result in overfitting the training set, and
poor generalizability in the test set. This effect was observed
when more than 60 or 70 classes were generated by ART2
(see Figs. 5 and 6).

The classification accuracy of ART2LDA increased initially
with an increased number of classes and then decreased
after reaching a maximum. The correct classification of the
outliers by the ART2 in combination with an improvement
in the classification by the LDA resulted in the increased
accuracy. When the number of ART2 classes was turther
increased, the effects of overfitting by the ART2 and the LDA
became dominant and the prediction ability of the ART2LDA
decreased. In some cases the second-stage LDA prediction
was much worse than the ART2. In other cases the ART2
could not generalize well. The generation of a high number of
classes is therefore impractical and unnecessary both from a
computational and a methodological point of view.

For the optimal number of classes (usually less than 50 for
the data sets used) the A, value for the second-stage LDA in
the ART2LDA was better than an LDA classifier alone, but it
was not as good as the overall 4, from the ART2LDA. It is
evident that the ART2 was a usetul classifier for improvement
of the second-stage classification.
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When the partial area of the ROC curve above the true posi-
tive fraction (TPF) of 0.9 (Ago,g) ) was considered as a measure
of classification accuracy, the advantage of ART2LDA over
LDA alone became even more evident. By removing and cor-
rectly classifying the outliers, the accuracy of the classification

was increased at the high sensitivity end of the curve.

The classifier performance was evaluated when the
ART2LDA classifiers were designed using a fixed number
of ART? classes. The results showed improved performance
of the ART2LDA in a range between 20 and 40 ART2
classes. Both the average A, and the average AL reached
a maximum within this region, and the maximum average A.
and the average AL yalues remained unchanged between 30
and 40 classes. These results indicated that the performance
of a hybrid ART2LDA classifer was robust and stable and
could be potentially useful in real clinical applications.

We have performed statistical tests with the CLABROC
program to estimate the significance in the differences between
the A, values from the ART2LDA, the LDA alone, and the
BPN, as well as in the differences in the partial AL from the
three classifiers. The statistical tests were performed for each
individual data set partition because the correlation among the
data sets from the different partitions precludes the use of
student’s paired ¢ test with the ten partitions. We found that the
differences in both cases did not reach statistical significance
because of the small number of test samples and thus the large
standard deviation in the A, values. However, the consistent
improvements in A, and AL by the ART2LDA (9 out of
10 data set partitions in both cases for LDA and six out of
ten data set partitions in both cases for BPN) suggest that the
improvement was not by chance alone, and that the accuracy
of a classification task could be improved by the use of an
ART2 network. In addition, one advantage of the ART2LDA
is that the training process is more efficient than that of the
BPN, especially when there is a subset of outlying samples. In
such a case, the BPN will require a large number of training
epochs to minimize the error function.

ART2LDA can be trained to classify the sample cases into
more than two classes, such as a class of normal tissue regions
in addition to malignant and benign masses. There will be an
increase in the complexity of training and a larger training
sample size will be desired, but these requirements will be
comparable for the different classifiers. In a clinical situation,
if the classification task is performed on all computer-detected
lesions, the classifier has to distinguish the falsely detected
normal tissue from malignant or benign lesions. However,
it may be noted that a classifier that can distinguish only
malignant and benign masses is applicable to the scenario
that the radiologist identifies a suspicious lesion on the mam-
mogram and would like to have a second opinion about its
likelihood of malignancy before making a diagnostic decision.
Therefore, the development of a classifier that can differentiate
malignant and benign masses is the research of interest for
many investigators.

Similarly, ART2 can be trained to discover and remove a
pure benign mass class. The approach will be similar to the
task of classifying and removing the pure malignant classes,
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as described in this study. However, our approach of removing
the malignant classes will reduce the chance of misclassifica-
tion of malignant masses. In breast cancer detection, the cost
of false-negative (missed cancer) is very high. Therefore, our
goal in classifier design is to be conservative. By removing
the malignant classes in the first stage, any misclassification
to these classes will be regarded as malignant. The remaining
classes will be classified again with the second-stage classifier
so malignant masses will be less likely to be missed.

The problem of classification of malignant and benign
masses has been studied by many investigators. Rangayyan
et al. [15] used Mahalanobis distance classifer (a modification
of an LDA classifier) and the leave-one-out method to evaluate
the classification of 54 masses. Fogel er al. [16] compared
LDA and BPN classifiers using the leave-one-out method and
139 masses (malignant and benign classification). Highnam
et al. [17] used a morphological feature called a halo to
classify 40 masses as malignant and benign. Huo er al. [22]
employed BPN and a rule-based classifier to classify 95 masses
using the leave-one-out evaluation method. Sahiner et al. [12]
used an LDA classifier and the leave-one-out method to
classify 168 masses. An important difference between the
classifier designed in this study and the previous studies in
the CAD field is the method of feature selection. In the
above mentioned studies [12], [15]-[17], [22] and several other
published studies [18]-[21] the features were selected from the
entire data set first, and then the data set was partitioned into
training and test sets. This meant that at the feature selection
stage of the classifier design, the entire data set was used as a
training set. Depending on the distribution of the features and
the total number of samples used, the test results in these
studies might be optimistically biased [37]. In our current
study, the entire data set was initially partitioned into training
and test sets and then feature selection was performed only
on the training set. This method will result in a pessimistic
estimate of the classifier performance when the training set is
small [37]. However, it will provide a more conservative but
realistic estimation of the classifier performance in the general
patient population. We can expect that the performance would
be improved if the classifier in this study were designed using
a large data set. Since our main purpose in this study was
to compare the ART2LDA classifier with the commonly used
LDA and BPN, we did not attempt to quantify how pessimistic
our results were in this study.

The most important contribution of this paper is to in-
troduce a new approach that utilizes a two-stage unsuper-
vised—supervised hybrid classifier. We believe that the hybrid
approach will improve classification when the sample distribu-
tion contains subpopulations that may be difficult for a single
classifier to classity. It will be usetul for similar classification
tasks although different classifiers may be used in each stage
of the hybrid structure.

VII. CONCLUSION

A new classifier combining an unsupervised ART2 and
a supervised LDA has been designed and applied to the
classification of malignant and benign masses. A data set
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consisting of 348 films (179 malignant and 169 benign)
was randomly partitioned into training and test subsets. Ten
different random partitions were generated. For each training
set, texture features were extracted and feature selection was
performed. An average of features were selected for each
group. A hybrid ART2LDA classifier, an LDA, and a BPN

‘were trained by using each of the ten training sets. The A

value under the ROC curve for the test sets, averaged over
the ten partitions, was higher for ART2LDA (A, = 0.81)
compared to those of the LDA alone (A, = 0.78) and of the
BPN (A, = 0.80). A greater improvement was obtained when
the partial ROC area above a true-positive fraction of 0.9 was
considered. The average partial A, for ART2LDA was 0.34,
as compared to 0.27 for LDA and 0.31 for BPN. Additionally,
for the ART2LDA classifiers that correctly classified the
maximum number of malignant masses in the test sets with
decision threshold defined with the training set, the average
partial A, was 0.35. These results indicate that the hybrid
classifier is a promising approach for improving the accuracy
of classifiers for CAD applications.
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